blob: d5ff196173f4284088cebb13e79ef0f510cd40d8 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::RowMajor;
using Eigen::Tensor;
static void test_simple_lvalue_ref() {
Tensor<int, 1> input(6);
input.setRandom();
TensorRef<Tensor<int, 1>> ref3(input);
TensorRef<Tensor<int, 1>> ref4 = input;
VERIFY_IS_EQUAL(ref3.data(), input.data());
VERIFY_IS_EQUAL(ref4.data(), input.data());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(ref3(i), input(i));
VERIFY_IS_EQUAL(ref4(i), input(i));
}
for (int i = 0; i < 6; ++i) {
ref3.coeffRef(i) = i;
}
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(input(i), i);
}
for (int i = 0; i < 6; ++i) {
ref4.coeffRef(i) = -i * 2;
}
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(input(i), -i * 2);
}
}
static void test_simple_rvalue_ref() {
Tensor<int, 1> input1(6);
input1.setRandom();
Tensor<int, 1> input2(6);
input2.setRandom();
TensorRef<Tensor<int, 1>> ref3(input1 + input2);
TensorRef<Tensor<int, 1>> ref4 = input1 + input2;
VERIFY_IS_NOT_EQUAL(ref3.data(), input1.data());
VERIFY_IS_NOT_EQUAL(ref4.data(), input1.data());
VERIFY_IS_NOT_EQUAL(ref3.data(), input2.data());
VERIFY_IS_NOT_EQUAL(ref4.data(), input2.data());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_EQUAL(ref3(i), input1(i) + input2(i));
VERIFY_IS_EQUAL(ref4(i), input1(i) + input2(i));
}
}
static void test_multiple_dims() {
Tensor<float, 3> input(3, 5, 7);
input.setRandom();
TensorRef<Tensor<float, 3>> ref(input);
VERIFY_IS_EQUAL(ref.data(), input.data());
VERIFY_IS_EQUAL(ref.dimension(0), 3);
VERIFY_IS_EQUAL(ref.dimension(1), 5);
VERIFY_IS_EQUAL(ref.dimension(2), 7);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(ref(i, j, k), input(i, j, k));
}
}
}
}
static void test_slice() {
Tensor<float, 5> tensor(2, 3, 5, 7, 11);
tensor.setRandom();
Eigen::DSizes<ptrdiff_t, 5> indices(1, 2, 3, 4, 5);
Eigen::DSizes<ptrdiff_t, 5> sizes(1, 1, 1, 1, 1);
TensorRef<Tensor<float, 5>> slice = tensor.slice(indices, sizes);
VERIFY_IS_EQUAL(slice(0, 0, 0, 0, 0), tensor(1, 2, 3, 4, 5));
Eigen::DSizes<ptrdiff_t, 5> indices2(1, 1, 3, 4, 5);
Eigen::DSizes<ptrdiff_t, 5> sizes2(1, 1, 2, 2, 3);
slice = tensor.slice(indices2, sizes2);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
VERIFY_IS_EQUAL(slice(0, 0, i, j, k), tensor(1, 1, 3 + i, 4 + j, 5 + k));
}
}
}
Eigen::DSizes<ptrdiff_t, 5> indices3(0, 0, 0, 0, 0);
Eigen::DSizes<ptrdiff_t, 5> sizes3(2, 3, 1, 1, 1);
slice = tensor.slice(indices3, sizes3);
VERIFY_IS_EQUAL(slice.data(), tensor.data());
}
static void test_ref_of_ref() {
Tensor<float, 3> input(3, 5, 7);
input.setRandom();
TensorRef<Tensor<float, 3>> ref(input);
TensorRef<Tensor<float, 3>> ref_of_ref(ref);
TensorRef<Tensor<float, 3>> ref_of_ref2;
ref_of_ref2 = ref;
VERIFY_IS_EQUAL(ref_of_ref.data(), input.data());
VERIFY_IS_EQUAL(ref_of_ref.dimension(0), 3);
VERIFY_IS_EQUAL(ref_of_ref.dimension(1), 5);
VERIFY_IS_EQUAL(ref_of_ref.dimension(2), 7);
VERIFY_IS_EQUAL(ref_of_ref2.data(), input.data());
VERIFY_IS_EQUAL(ref_of_ref2.dimension(0), 3);
VERIFY_IS_EQUAL(ref_of_ref2.dimension(1), 5);
VERIFY_IS_EQUAL(ref_of_ref2.dimension(2), 7);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(ref_of_ref(i, j, k), input(i, j, k));
VERIFY_IS_EQUAL(ref_of_ref2(i, j, k), input(i, j, k));
}
}
}
}
static void test_ref_in_expr() {
Tensor<float, 3> input(3, 5, 7);
input.setRandom();
TensorRef<Tensor<float, 3>> input_ref(input);
Tensor<float, 3> result(3, 5, 7);
result.setRandom();
TensorRef<Tensor<float, 3>> result_ref(result);
Tensor<float, 3> bias(3, 5, 7);
bias.setRandom();
result_ref = input_ref + bias;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(result_ref(i, j, k), input(i, j, k) + bias(i, j, k));
VERIFY_IS_NOT_EQUAL(result(i, j, k), input(i, j, k) + bias(i, j, k));
}
}
}
result = result_ref;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(result(i, j, k), input(i, j, k) + bias(i, j, k));
}
}
}
}
static void test_coeff_ref() {
Tensor<float, 5> tensor(2, 3, 5, 7, 11);
tensor.setRandom();
Tensor<float, 5> original = tensor;
TensorRef<Tensor<float, 4>> slice = tensor.chip(7, 4);
slice.coeffRef(0, 0, 0, 0) = 1.0f;
slice.coeffRef(1, 0, 0, 0) += 2.0f;
VERIFY_IS_EQUAL(tensor(0, 0, 0, 0, 7), 1.0f);
VERIFY_IS_EQUAL(tensor(1, 0, 0, 0, 7), original(1, 0, 0, 0, 7) + 2.0f);
}
static void test_nested_ops_with_ref() {
Tensor<float, 4> t(2, 3, 5, 7);
t.setRandom();
TensorMap<Tensor<const float, 4>> m(t.data(), 2, 3, 5, 7);
array<std::pair<ptrdiff_t, ptrdiff_t>, 4> paddings;
paddings[0] = std::make_pair(0, 0);
paddings[1] = std::make_pair(2, 1);
paddings[2] = std::make_pair(3, 4);
paddings[3] = std::make_pair(0, 0);
DSizes<Eigen::DenseIndex, 4> shuffle_dims(0, 1, 2, 3);
TensorRef<Tensor<const float, 4>> ref(m.pad(paddings));
array<std::pair<ptrdiff_t, ptrdiff_t>, 4> trivial;
trivial[0] = std::make_pair(0, 0);
trivial[1] = std::make_pair(0, 0);
trivial[2] = std::make_pair(0, 0);
trivial[3] = std::make_pair(0, 0);
Tensor<float, 4> padded = ref.shuffle(shuffle_dims).pad(trivial);
VERIFY_IS_EQUAL(padded.dimension(0), 2 + 0);
VERIFY_IS_EQUAL(padded.dimension(1), 3 + 3);
VERIFY_IS_EQUAL(padded.dimension(2), 5 + 7);
VERIFY_IS_EQUAL(padded.dimension(3), 7 + 0);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 6; ++j) {
for (int k = 0; k < 12; ++k) {
for (int l = 0; l < 7; ++l) {
if (j >= 2 && j < 5 && k >= 3 && k < 8) {
VERIFY_IS_EQUAL(padded(i, j, k, l), t(i, j - 2, k - 3, l));
} else {
VERIFY_IS_EQUAL(padded(i, j, k, l), 0.0f);
}
}
}
}
}
}
EIGEN_DECLARE_TEST(cxx11_tensor_ref) {
CALL_SUBTEST(test_simple_lvalue_ref());
CALL_SUBTEST(test_simple_rvalue_ref());
CALL_SUBTEST(test_multiple_dims());
CALL_SUBTEST(test_slice());
CALL_SUBTEST(test_ref_of_ref());
CALL_SUBTEST(test_ref_in_expr());
CALL_SUBTEST(test_coeff_ref());
CALL_SUBTEST(test_nested_ops_with_ref());
}