| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/FFT> |
| |
| template <typename T> |
| inline std::complex<T> RandomCpx() { |
| return std::complex<T>((T)(rand() / (T)RAND_MAX - .5), (T)(rand() / (T)RAND_MAX - .5)); |
| } |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| template <typename T> |
| inline complex<long double> promote(complex<T> x) { |
| return complex<long double>((long double)x.real(), (long double)x.imag()); |
| } |
| |
| inline complex<long double> promote(float x) { return complex<long double>((long double)x); } |
| inline complex<long double> promote(double x) { return complex<long double>((long double)x); } |
| inline complex<long double> promote(long double x) { return complex<long double>((long double)x); } |
| |
| template <typename VT1, typename VT2> |
| long double fft_rmse(const VT1& fftbuf, const VT2& timebuf) { |
| long double totalpower = 0; |
| long double difpower = 0; |
| long double pi = acos((long double)-1); |
| for (size_t k0 = 0; k0 < (size_t)fftbuf.size(); ++k0) { |
| complex<long double> acc = 0; |
| long double phinc = (long double)(-2.) * k0 * pi / timebuf.size(); |
| for (size_t k1 = 0; k1 < (size_t)timebuf.size(); ++k1) { |
| acc += promote(timebuf[k1]) * exp(complex<long double>(0, k1 * phinc)); |
| } |
| totalpower += numext::abs2(acc); |
| complex<long double> x = promote(fftbuf[k0]); |
| complex<long double> dif = acc - x; |
| difpower += numext::abs2(dif); |
| // cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl; |
| } |
| // cerr << "rmse:" << sqrt(difpower/totalpower) << endl; |
| return sqrt(difpower / totalpower); |
| } |
| |
| template <typename VT1, typename VT2> |
| long double dif_rmse(const VT1 buf1, const VT2 buf2) { |
| long double totalpower = 0; |
| long double difpower = 0; |
| size_t n = (min)(buf1.size(), buf2.size()); |
| for (size_t k = 0; k < n; ++k) { |
| totalpower += (long double)((numext::abs2(buf1[k]) + numext::abs2(buf2[k])) / 2); |
| difpower += (long double)(numext::abs2(buf1[k] - buf2[k])); |
| } |
| return sqrt(difpower / totalpower); |
| } |
| |
| enum { StdVectorContainer, EigenVectorContainer }; |
| |
| template <int Container, typename Scalar> |
| struct VectorType; |
| |
| template <typename Scalar> |
| struct VectorType<StdVectorContainer, Scalar> { |
| typedef vector<Scalar> type; |
| }; |
| |
| template <typename Scalar> |
| struct VectorType<EigenVectorContainer, Scalar> { |
| typedef Matrix<Scalar, Dynamic, 1> type; |
| }; |
| |
| template <int Container, typename T> |
| void test_scalar_generic(int nfft) { |
| typedef typename FFT<T>::Complex Complex; |
| typedef typename FFT<T>::Scalar Scalar; |
| typedef typename VectorType<Container, Scalar>::type ScalarVector; |
| typedef typename VectorType<Container, Complex>::type ComplexVector; |
| |
| FFT<T> fft; |
| ScalarVector tbuf(nfft); |
| ComplexVector freqBuf; |
| for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5); |
| |
| // make sure it DOESN'T give the right full spectrum answer |
| // if we've asked for half-spectrum |
| fft.SetFlag(fft.HalfSpectrum); |
| fft.fwd(freqBuf, tbuf); |
| VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1)); |
| VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check |
| |
| fft.ClearFlag(fft.HalfSpectrum); |
| fft.fwd(freqBuf, tbuf); |
| VERIFY((size_t)freqBuf.size() == (size_t)nfft); |
| VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check |
| |
| if (nfft & 1) return; // odd FFTs get the wrong size inverse FFT |
| |
| ScalarVector tbuf2; |
| fft.inv(tbuf2, freqBuf); |
| VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check |
| |
| // verify that the Unscaled flag takes effect |
| ScalarVector tbuf3; |
| fft.SetFlag(fft.Unscaled); |
| |
| fft.inv(tbuf3, freqBuf); |
| |
| for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft); |
| |
| // for (size_t i=0;i<(size_t) tbuf.size();++i) |
| // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - |
| // tbuf[i] ) << endl; |
| |
| VERIFY(T(dif_rmse(tbuf, tbuf3)) < test_precision<T>()); // gross check |
| |
| // verify that ClearFlag works |
| fft.ClearFlag(fft.Unscaled); |
| fft.inv(tbuf2, freqBuf); |
| VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check |
| } |
| |
| template <typename T> |
| void test_scalar(int nfft) { |
| test_scalar_generic<StdVectorContainer, T>(nfft); |
| // test_scalar_generic<EigenVectorContainer,T>(nfft); |
| } |
| |
| template <int Container, typename T> |
| void test_complex_generic(int nfft) { |
| typedef typename FFT<T>::Complex Complex; |
| typedef typename VectorType<Container, Complex>::type ComplexVector; |
| |
| FFT<T> fft; |
| |
| ComplexVector inbuf(nfft); |
| ComplexVector outbuf; |
| ComplexVector buf3; |
| for (int k = 0; k < nfft; ++k) |
| inbuf[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5)); |
| fft.fwd(outbuf, inbuf); |
| |
| VERIFY(T(fft_rmse(outbuf, inbuf)) < test_precision<T>()); // gross check |
| fft.inv(buf3, outbuf); |
| |
| VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check |
| |
| // verify that the Unscaled flag takes effect |
| ComplexVector buf4; |
| fft.SetFlag(fft.Unscaled); |
| fft.inv(buf4, outbuf); |
| for (int k = 0; k < nfft; ++k) buf4[k] *= T(1. / nfft); |
| VERIFY(T(dif_rmse(inbuf, buf4)) < test_precision<T>()); // gross check |
| |
| // verify that ClearFlag works |
| fft.ClearFlag(fft.Unscaled); |
| fft.inv(buf3, outbuf); |
| VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check |
| } |
| |
| template <typename T> |
| void test_complex_strided(int nfft) { |
| typedef typename FFT<T>::Complex Complex; |
| typedef typename Eigen::Vector<Complex, Dynamic> ComplexVector; |
| constexpr int kInputStride = 3; |
| constexpr int kOutputStride = 7; |
| constexpr int kInvOutputStride = 13; |
| |
| FFT<T> fft; |
| |
| ComplexVector inbuf(nfft * kInputStride); |
| inbuf.setRandom(); |
| ComplexVector outbuf(nfft * kOutputStride); |
| outbuf.setRandom(); |
| ComplexVector invoutbuf(nfft * kInvOutputStride); |
| invoutbuf.setRandom(); |
| |
| using StridedComplexVector = Map<ComplexVector, /*MapOptions=*/0, InnerStride<Dynamic>>; |
| StridedComplexVector input(inbuf.data(), nfft, InnerStride<Dynamic>(kInputStride)); |
| StridedComplexVector output(outbuf.data(), nfft, InnerStride<Dynamic>(kOutputStride)); |
| StridedComplexVector inv_output(invoutbuf.data(), nfft, InnerStride<Dynamic>(kInvOutputStride)); |
| |
| for (int k = 0; k < nfft; ++k) |
| input[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5)); |
| fft.fwd(output, input); |
| |
| VERIFY(T(fft_rmse(output, input)) < test_precision<T>()); // gross check |
| fft.inv(inv_output, output); |
| VERIFY(T(dif_rmse(inv_output, input)) < test_precision<T>()); // gross check |
| } |
| |
| template <typename T> |
| void test_complex(int nfft) { |
| test_complex_generic<StdVectorContainer, T>(nfft); |
| test_complex_generic<EigenVectorContainer, T>(nfft); |
| test_complex_strided<T>(nfft); |
| } |
| |
| template <typename T, int nrows, int ncols> |
| void test_complex2d() { |
| typedef typename Eigen::FFT<T>::Complex Complex; |
| FFT<T> fft; |
| Eigen::Matrix<Complex, nrows, ncols> src, src2, dst, dst2; |
| |
| src = Eigen::Matrix<Complex, nrows, ncols>::Random(); |
| // src = Eigen::Matrix<Complex,nrows,ncols>::Identity(); |
| |
| for (int k = 0; k < ncols; k++) { |
| Eigen::Matrix<Complex, nrows, 1> tmpOut; |
| fft.fwd(tmpOut, src.col(k)); |
| dst2.col(k) = tmpOut; |
| } |
| |
| for (int k = 0; k < nrows; k++) { |
| Eigen::Matrix<Complex, 1, ncols> tmpOut; |
| fft.fwd(tmpOut, dst2.row(k)); |
| dst2.row(k) = tmpOut; |
| } |
| |
| fft.fwd2(dst.data(), src.data(), ncols, nrows); |
| fft.inv2(src2.data(), dst.data(), ncols, nrows); |
| VERIFY((src - src2).norm() < test_precision<T>()); |
| VERIFY((dst - dst2).norm() < test_precision<T>()); |
| } |
| |
| inline void test_return_by_value(int len) { |
| VectorXf in; |
| VectorXf in1; |
| in.setRandom(len); |
| VectorXcf out1, out2; |
| FFT<float> fft; |
| |
| fft.SetFlag(fft.HalfSpectrum); |
| |
| fft.fwd(out1, in); |
| out2 = fft.fwd(in); |
| VERIFY((out1 - out2).norm() < test_precision<float>()); |
| in1 = fft.inv(out1); |
| VERIFY((in1 - in).norm() < test_precision<float>()); |
| } |
| |
| EIGEN_DECLARE_TEST(FFTW) { |
| CALL_SUBTEST(test_return_by_value(32)); |
| CALL_SUBTEST(test_complex<float>(32)); |
| CALL_SUBTEST(test_complex<double>(32)); |
| CALL_SUBTEST(test_complex<float>(256)); |
| CALL_SUBTEST(test_complex<double>(256)); |
| CALL_SUBTEST(test_complex<float>(3 * 8)); |
| CALL_SUBTEST(test_complex<double>(3 * 8)); |
| CALL_SUBTEST(test_complex<float>(5 * 32)); |
| CALL_SUBTEST(test_complex<double>(5 * 32)); |
| CALL_SUBTEST(test_complex<float>(2 * 3 * 4)); |
| CALL_SUBTEST(test_complex<double>(2 * 3 * 4)); |
| CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5)); |
| CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5)); |
| CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5 * 7)); |
| CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5 * 7)); |
| |
| CALL_SUBTEST(test_scalar<float>(32)); |
| CALL_SUBTEST(test_scalar<double>(32)); |
| CALL_SUBTEST(test_scalar<float>(45)); |
| CALL_SUBTEST(test_scalar<double>(45)); |
| CALL_SUBTEST(test_scalar<float>(50)); |
| CALL_SUBTEST(test_scalar<double>(50)); |
| CALL_SUBTEST(test_scalar<float>(256)); |
| CALL_SUBTEST(test_scalar<double>(256)); |
| CALL_SUBTEST(test_scalar<float>(2 * 3 * 4 * 5 * 7)); |
| CALL_SUBTEST(test_scalar<double>(2 * 3 * 4 * 5 * 7)); |
| |
| #if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT |
| CALL_SUBTEST(test_complex<long double>(32)); |
| CALL_SUBTEST(test_complex<long double>(256)); |
| CALL_SUBTEST(test_complex<long double>(3 * 8)); |
| CALL_SUBTEST(test_complex<long double>(5 * 32)); |
| CALL_SUBTEST(test_complex<long double>(2 * 3 * 4)); |
| CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5)); |
| CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5 * 7)); |
| |
| CALL_SUBTEST(test_scalar<long double>(32)); |
| CALL_SUBTEST(test_scalar<long double>(45)); |
| CALL_SUBTEST(test_scalar<long double>(50)); |
| CALL_SUBTEST(test_scalar<long double>(256)); |
| CALL_SUBTEST(test_scalar<long double>(2 * 3 * 4 * 5 * 7)); |
| |
| CALL_SUBTEST((test_complex2d<long double, 2 * 3 * 4, 2 * 3 * 4>())); |
| CALL_SUBTEST((test_complex2d<long double, 3 * 4 * 5, 3 * 4 * 5>())); |
| CALL_SUBTEST((test_complex2d<long double, 24, 60>())); |
| CALL_SUBTEST((test_complex2d<long double, 60, 24>())); |
| // fail to build since Eigen limit the stack allocation size,too big here. |
| // CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) ); |
| #endif |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| CALL_SUBTEST((test_complex2d<float, 24, 24>())); |
| CALL_SUBTEST((test_complex2d<float, 60, 60>())); |
| CALL_SUBTEST((test_complex2d<float, 24, 60>())); |
| CALL_SUBTEST((test_complex2d<float, 60, 24>())); |
| #endif |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| CALL_SUBTEST((test_complex2d<double, 24, 24>())); |
| CALL_SUBTEST((test_complex2d<double, 60, 60>())); |
| CALL_SUBTEST((test_complex2d<double, 24, 60>())); |
| CALL_SUBTEST((test_complex2d<double, 60, 24>())); |
| #endif |
| } |