| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <cstdlib> |
| #include <string> |
| |
| #include "sparse.h" |
| |
| #ifdef min |
| #undef min |
| #endif |
| |
| #ifdef max |
| #undef max |
| #endif |
| |
| #include <Eigen/SparseExtra> |
| |
| // Read from an environment variable TEST_TMPDIR, if available, |
| // and append the provided filename. Defaults to local directory. |
| std::string GetTestTempFilename(const char* filename) { |
| const char* test_tmpdir = std::getenv("TEST_TMPDIR"); |
| if (test_tmpdir == nullptr) { |
| return std::string(filename); |
| } |
| return std::string(test_tmpdir) + std::string("/") + std::string(filename); |
| } |
| |
| template <typename SetterType, typename DenseType, typename Scalar, int Options> |
| bool test_random_setter(SparseMatrix<Scalar, Options>& sm, const DenseType& ref, |
| const std::vector<Vector2i>& nonzeroCoords) { |
| { |
| sm.setZero(); |
| SetterType w(sm); |
| std::vector<Vector2i> remaining = nonzeroCoords; |
| while (!remaining.empty()) { |
| int i = internal::random<int>(0, static_cast<int>(remaining.size()) - 1); |
| w(remaining[i].x(), remaining[i].y()) = ref.coeff(remaining[i].x(), remaining[i].y()); |
| remaining[i] = remaining.back(); |
| remaining.pop_back(); |
| } |
| } |
| return sm.isApprox(ref); |
| } |
| |
| template <typename SparseMatrixType> |
| void sparse_extra(const SparseMatrixType& ref) { |
| const Index rows = ref.rows(); |
| const Index cols = ref.cols(); |
| typedef typename SparseMatrixType::Scalar Scalar; |
| enum { Flags = SparseMatrixType::Flags }; |
| |
| double density = (std::max)(8. / (rows * cols), 0.01); |
| typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; |
| typedef Matrix<Scalar, Dynamic, 1> DenseVector; |
| Scalar eps = 1e-6; |
| |
| SparseMatrixType m(rows, cols); |
| DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| DenseVector vec1 = DenseVector::Random(rows); |
| |
| std::vector<Vector2i> zeroCoords; |
| std::vector<Vector2i> nonzeroCoords; |
| initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); |
| |
| if (zeroCoords.size() == 0 || nonzeroCoords.size() == 0) return; |
| |
| // test coeff and coeffRef |
| for (int i = 0; i < (int)zeroCoords.size(); ++i) { |
| VERIFY_IS_MUCH_SMALLER_THAN(m.coeff(zeroCoords[i].x(), zeroCoords[i].y()), eps); |
| if (internal::is_same<SparseMatrixType, SparseMatrix<Scalar, Flags> >::value) |
| VERIFY_RAISES_ASSERT(m.coeffRef(zeroCoords[0].x(), zeroCoords[0].y()) = 5); |
| } |
| VERIFY_IS_APPROX(m, refMat); |
| |
| m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| |
| VERIFY_IS_APPROX(m, refMat); |
| |
| // random setter |
| // { |
| // m.setZero(); |
| // VERIFY_IS_NOT_APPROX(m, refMat); |
| // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); |
| // std::vector<Vector2i> remaining = nonzeroCoords; |
| // while(!remaining.empty()) |
| // { |
| // int i = internal::random<int>(0,remaining.size()-1); |
| // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); |
| // remaining[i] = remaining.back(); |
| // remaining.pop_back(); |
| // } |
| // } |
| // VERIFY_IS_APPROX(m, refMat); |
| |
| VERIFY((test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m, refMat, nonzeroCoords))); |
| VERIFY((test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m, refMat, nonzeroCoords))); |
| #ifdef EIGEN_GOOGLEHASH_SUPPORT |
| VERIFY((test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m, refMat, nonzeroCoords))); |
| VERIFY((test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m, refMat, nonzeroCoords))); |
| #endif |
| |
| // test RandomSetter |
| /*{ |
| SparseMatrixType m1(rows,cols), m2(rows,cols); |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| initSparse<Scalar>(density, refM1, m1); |
| { |
| Eigen::RandomSetter<SparseMatrixType > setter(m2); |
| for (int j=0; j<m1.outerSize(); ++j) |
| for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) |
| setter(i.index(), j) = i.value(); |
| } |
| VERIFY_IS_APPROX(m1, m2); |
| }*/ |
| } |
| |
| template <typename SparseMatrixType> |
| void check_marketio() { |
| typedef Matrix<typename SparseMatrixType::Scalar, Dynamic, Dynamic> DenseMatrix; |
| Index rows = internal::random<Index>(1, 100); |
| Index cols = internal::random<Index>(1, 100); |
| SparseMatrixType m1, m2; |
| m1 = DenseMatrix::Random(rows, cols).sparseView(); |
| std::string filename = GetTestTempFilename("sparse_extra.mtx"); |
| saveMarket(m1, filename); |
| loadMarket(m2, filename); |
| VERIFY_IS_EQUAL(DenseMatrix(m1), DenseMatrix(m2)); |
| } |
| |
| template <typename VectorType> |
| void check_marketio_vector() { |
| Index size = internal::random<Index>(1, 100); |
| VectorType v1, v2; |
| v1 = VectorType::Random(size); |
| std::string filename = GetTestTempFilename("vector_extra.mtx"); |
| saveMarketVector(v1, filename); |
| loadMarketVector(v2, filename); |
| VERIFY_IS_EQUAL(v1, v2); |
| } |
| |
| template <typename DenseMatrixType> |
| void check_marketio_dense() { |
| Index rows = DenseMatrixType::MaxRowsAtCompileTime; |
| if (DenseMatrixType::MaxRowsAtCompileTime == Dynamic) { |
| rows = internal::random<Index>(1, 100); |
| } else if (DenseMatrixType::RowsAtCompileTime == Dynamic) { |
| rows = internal::random<Index>(1, DenseMatrixType::MaxRowsAtCompileTime); |
| } |
| |
| Index cols = DenseMatrixType::MaxColsAtCompileTime; |
| if (DenseMatrixType::MaxColsAtCompileTime == Dynamic) { |
| cols = internal::random<Index>(1, 100); |
| } else if (DenseMatrixType::ColsAtCompileTime == Dynamic) { |
| cols = internal::random<Index>(1, DenseMatrixType::MaxColsAtCompileTime); |
| } |
| |
| DenseMatrixType m1, m2; |
| m1 = DenseMatrixType::Random(rows, cols); |
| std::string filename = GetTestTempFilename("dense_extra.mtx"); |
| saveMarketDense(m1, filename); |
| loadMarketDense(m2, filename); |
| VERIFY_IS_EQUAL(m1, m2); |
| } |
| |
| template <typename Scalar> |
| void check_sparse_inverse() { |
| typedef SparseMatrix<Scalar> MatrixType; |
| |
| Matrix<Scalar, -1, -1> A; |
| A.resize(1000, 1000); |
| A.fill(0); |
| A.setIdentity(); |
| A.col(0).array() += 1; |
| A.row(0).array() += 2; |
| A.col(2).array() += 3; |
| A.row(7).array() += 3; |
| A.col(9).array() += 3; |
| A.block(3, 4, 4, 2).array() += 9; |
| A.middleRows(10, 50).array() += 3; |
| A.middleCols(50, 50).array() += 40; |
| A.block(500, 300, 40, 20).array() += 10; |
| A.transposeInPlace(); |
| |
| Eigen::SparseLU<MatrixType> slu; |
| slu.compute(A.sparseView()); |
| Matrix<Scalar, -1, -1> Id(A.rows(), A.cols()); |
| Id.setIdentity(); |
| Matrix<Scalar, -1, -1> inv = slu.solve(Id); |
| |
| const MatrixType sparseInv = Eigen::SparseInverse<Scalar>().compute(A.sparseView()).inverse(); |
| |
| Scalar sumdiff = 0; // Check the diff only of the non-zero elements |
| for (Eigen::Index j = 0; j < A.cols(); j++) { |
| for (typename MatrixType::InnerIterator iter(sparseInv, j); iter; ++iter) { |
| const Scalar diff = std::abs(inv(iter.row(), iter.col()) - iter.value()); |
| VERIFY_IS_APPROX_OR_LESS_THAN(diff, 1e-11); |
| |
| if (iter.value() != 0) { |
| sumdiff += diff; |
| } |
| } |
| } |
| |
| VERIFY_IS_APPROX_OR_LESS_THAN(sumdiff, 1e-10); |
| } |
| |
| EIGEN_DECLARE_TEST(sparse_extra) { |
| for (int i = 0; i < g_repeat; i++) { |
| int s = Eigen::internal::random<int>(1, 50); |
| CALL_SUBTEST_1(sparse_extra(SparseMatrix<double>(8, 8))); |
| CALL_SUBTEST_2(sparse_extra(SparseMatrix<std::complex<double> >(s, s))); |
| CALL_SUBTEST_1(sparse_extra(SparseMatrix<double>(s, s))); |
| |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<float, ColMajor, int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<double, ColMajor, int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<std::complex<float>, ColMajor, int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<std::complex<double>, ColMajor, int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<float, ColMajor, long int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<double, ColMajor, long int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<std::complex<float>, ColMajor, long int> >())); |
| CALL_SUBTEST_3((check_marketio<SparseMatrix<std::complex<double>, ColMajor, long int> >())); |
| |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<float, Dynamic, Dynamic> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<float, Dynamic, Dynamic, RowMajor> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<double, Dynamic, Dynamic> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<std::complex<float>, Dynamic, Dynamic> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<std::complex<double>, Dynamic, Dynamic> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<float, Dynamic, 3> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<double, 3, Dynamic> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<double, 3, 4> >())); |
| CALL_SUBTEST_4((check_marketio_dense<Matrix<double, Dynamic, Dynamic, ColMajor, 5, 5> >())); |
| |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<float, 1, Dynamic> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<double, 1, Dynamic> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<std::complex<float>, 1, Dynamic> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<std::complex<double>, 1, Dynamic> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<float, Dynamic, 1> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<double, Dynamic, 1> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<std::complex<float>, Dynamic, 1> >())); |
| CALL_SUBTEST_5((check_marketio_vector<Matrix<std::complex<double>, Dynamic, 1> >())); |
| |
| CALL_SUBTEST_6((check_sparse_inverse<double>())); |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(s); |
| } |
| } |