blob: 2c9999ce80851e46579b405669bf8d912a77c6bf [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#if EIGEN_HAS_CXX11
#include "MovableScalar.h"
#endif
#include "SafeScalar.h"
#include <Eigen/Core>
using internal::UIntPtr;
#if EIGEN_HAS_RVALUE_REFERENCES
template <typename MatrixType>
void rvalue_copyassign(const MatrixType& m)
{
typedef typename internal::traits<MatrixType>::Scalar Scalar;
// create a temporary which we are about to destroy by moving
MatrixType tmp = m;
UIntPtr src_address = reinterpret_cast<UIntPtr>(tmp.data());
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
// move the temporary to n
MatrixType n = std::move(tmp);
UIntPtr dst_address = reinterpret_cast<UIntPtr>(n.data());
if (MatrixType::RowsAtCompileTime==Dynamic|| MatrixType::ColsAtCompileTime==Dynamic)
{
// verify that we actually moved the guts
VERIFY_IS_EQUAL(src_address, dst_address);
VERIFY_IS_EQUAL(tmp.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(tmp.data()), UIntPtr(0));
}
// verify that the content did not change
Scalar abs_diff = (m-n).array().abs().sum();
VERIFY_IS_EQUAL(abs_diff, Scalar(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template<typename TranspositionsType>
void rvalue_transpositions(Index rows)
{
typedef typename TranspositionsType::IndicesType PermutationVectorType;
PermutationVectorType vec;
randomPermutationVector(vec, rows);
TranspositionsType t0(vec);
Eigen::internal::set_is_malloc_allowed(false); // moving from an rvalue reference shall never allocate
UIntPtr t0_address = reinterpret_cast<UIntPtr>(t0.indices().data());
// Move constructors:
TranspositionsType t1 = std::move(t0);
UIntPtr t1_address = reinterpret_cast<UIntPtr>(t1.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t0 must be de-allocated:
VERIFY_IS_EQUAL(t0.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(t0.indices().data()), UIntPtr(0));
// Move assignment:
t0 = std::move(t1);
t0_address = reinterpret_cast<UIntPtr>(t0.indices().data());
VERIFY_IS_EQUAL(t0_address, t1_address);
// t1 must be de-allocated:
VERIFY_IS_EQUAL(t1.size(), 0);
VERIFY_IS_EQUAL(reinterpret_cast<UIntPtr>(t1.indices().data()), UIntPtr(0));
Eigen::internal::set_is_malloc_allowed(true);
}
template <typename MatrixType>
void rvalue_move(const MatrixType& m)
{
// lvalue reference is copied
MatrixType b(m);
VERIFY_IS_EQUAL(b, m);
// lvalue reference is copied
MatrixType c{m};
VERIFY_IS_EQUAL(c, m);
// lvalue reference is copied
MatrixType d = m;
VERIFY_IS_EQUAL(d, m);
// rvalue reference is moved - copy constructor.
MatrixType e_src(m);
VERIFY_IS_EQUAL(e_src, m);
MatrixType e_dst(std::move(e_src));
VERIFY_IS_EQUAL(e_dst, m);
// rvalue reference is moved - copy constructor.
MatrixType f_src(m);
VERIFY_IS_EQUAL(f_src, m);
MatrixType f_dst = std::move(f_src);
VERIFY_IS_EQUAL(f_dst, m);
// rvalue reference is moved - copy assignment.
MatrixType g_src(m);
VERIFY_IS_EQUAL(g_src, m);
MatrixType g_dst;
g_dst = std::move(g_src);
VERIFY_IS_EQUAL(g_dst, m);
}
#else
template <typename MatrixType>
void rvalue_copyassign(const MatrixType&) {}
template<typename TranspositionsType>
void rvalue_transpositions(Index) {}
template <typename MatrixType>
void rvalue_move(const MatrixType&) {}
#endif
EIGEN_DECLARE_TEST(rvalue_types)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(rvalue_copyassign( MatrixXf::Random(50,50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( ArrayXXf::Random(50,50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Matrix<float,1,Dynamic>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Array<float,1,Dynamic>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Matrix<float,Dynamic,1>::Random(50).eval() ));
CALL_SUBTEST_1(rvalue_copyassign( Array<float,Dynamic,1>::Random(50).eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,2,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,3,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,4,1>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,2,2>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,3,3>::Random().eval() ));
CALL_SUBTEST_2(rvalue_copyassign( Array<float,4,4>::Random().eval() ));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, int> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_3((rvalue_transpositions<PermutationMatrix<Dynamic, Dynamic, Index> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4((rvalue_transpositions<Transpositions<Dynamic, Dynamic, int> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4((rvalue_transpositions<Transpositions<Dynamic, Dynamic, Index> >(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))));
#if EIGEN_HAS_CXX11
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<MovableScalar<float>,1,3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>,1,3>::Random().eval()));
CALL_SUBTEST_5(rvalue_move(Eigen::Matrix<SafeScalar<float>,Eigen::Dynamic,Eigen::Dynamic>::Random(1,3).eval()));
#endif
}
}