| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2025 Weiwei Kong <weiweikong@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_THREADPOOL_FORKJOIN_H |
| #define EIGEN_THREADPOOL_FORKJOIN_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| // ForkJoinScheduler provides implementations of various non-blocking ParallelFor algorithms for unary |
| // and binary parallel tasks. More specifically, the implementations follow the binary tree-based |
| // algorithm from the following paper: |
| // |
| // Lea, D. (2000, June). A java fork/join framework. *In Proceedings of the |
| // ACM 2000 conference on Java Grande* (pp. 36-43). |
| // |
| // For a given binary task function `f(i,j)` and integers `num_threads`, `granularity`, `start`, and `end`, |
| // the implemented parallel for algorithm schedules and executes at most `num_threads` of the functions |
| // from the following set in parallel (either synchronously or asynchronously): |
| // |
| // f(start,start+s_1), f(start+s_1,start+s_2), ..., f(start+s_n,end) |
| // |
| // where `s_{j+1} - s_{j}` and `end - s_n` are roughly within a factor of two of `granularity`. For a unary |
| // task function `g(k)`, the same operation is applied with |
| // |
| // f(i,j) = [&](){ for(Index k = i; k < j; ++k) g(k); }; |
| // |
| // Note that the parameter `granularity` should be tuned by the user based on the trade-off of running the |
| // given task function sequentially vs. scheduling individual tasks in parallel. An example of a partially |
| // tuned `granularity` is in `Eigen::CoreThreadPoolDevice::parallelFor(...)` where the template |
| // parameter `PacketSize` and float input `cost` are used to indirectly compute a granularity level for a |
| // given task function. |
| // |
| // Example usage #1 (synchronous): |
| // ``` |
| // ThreadPool thread_pool(num_threads); |
| // ForkJoinScheduler::ParallelFor(0, num_tasks, granularity, std::move(parallel_task), &thread_pool); |
| // ``` |
| // |
| // Example usage #2 (executing multiple tasks asynchronously, each one parallelized with ParallelFor): |
| // ``` |
| // ThreadPool thread_pool(num_threads); |
| // Barrier barrier(num_async_calls); |
| // auto done = [&](){ barrier.Notify(); }; |
| // for (Index k=0; k<num_async_calls; ++k) { |
| // ForkJoinScheduler::ParallelForAsync(task_start[k], task_end[k], granularity[k], parallel_task[k], done, |
| // &thread_pool); |
| // } |
| // barrier.Wait(); |
| // ``` |
| class ForkJoinScheduler { |
| public: |
| // Runs `do_func` asynchronously for the range [start, end) with a specified |
| // granularity. `do_func` should be of type `std::function<void(Index, |
| // Index)`. `done()` is called exactly once after all tasks have been executed. |
| template <typename DoFnType, typename DoneFnType> |
| static void ParallelForAsync(Index start, Index end, Index granularity, DoFnType&& do_func, DoneFnType&& done, |
| ThreadPool* thread_pool) { |
| if (start >= end) { |
| done(); |
| return; |
| } |
| thread_pool->Schedule([start, end, granularity, thread_pool, do_func = std::forward<DoFnType>(do_func), |
| done = std::forward<DoneFnType>(done)]() { |
| RunParallelFor(start, end, granularity, do_func, thread_pool); |
| done(); |
| }); |
| } |
| |
| // Synchronous variant of ParallelForAsync. |
| template <typename DoFnType> |
| static void ParallelFor(Index start, Index end, Index granularity, DoFnType&& do_func, ThreadPool* thread_pool) { |
| if (start >= end) return; |
| Barrier barrier(1); |
| auto done = [&barrier]() { barrier.Notify(); }; |
| ParallelForAsync(start, end, granularity, do_func, done, thread_pool); |
| barrier.Wait(); |
| } |
| |
| private: |
| // Schedules `right_thunk`, runs `left_thunk`, and runs other tasks until `right_thunk` has finished. |
| template <typename LeftType, typename RightType> |
| static void ForkJoin(LeftType&& left_thunk, RightType&& right_thunk, ThreadPool* thread_pool) { |
| std::atomic<bool> right_done(false); |
| auto execute_right = [&right_thunk, &right_done]() { |
| std::forward<RightType>(right_thunk)(); |
| right_done.store(true, std::memory_order_release); |
| }; |
| thread_pool->Schedule(execute_right); |
| std::forward<LeftType>(left_thunk)(); |
| ThreadPool::Task task; |
| while (!right_done.load(std::memory_order_acquire)) { |
| thread_pool->MaybeGetTask(&task); |
| if (task.f) task.f(); |
| } |
| } |
| |
| static Index ComputeMidpoint(Index start, Index end, Index granularity) { |
| // Typical workloads choose initial values of `{start, end, granularity}` such that `start - end` and |
| // `granularity` are powers of two. Since modern processors usually implement (2^x)-way |
| // set-associative caches, we minimize the number of cache misses by choosing midpoints that are not |
| // powers of two (to avoid having two addresses in the main memory pointing to the same point in the |
| // cache). More specifically, we choose the midpoint at (roughly) the 9/16 mark. |
| const Index size = end - start; |
| const Index offset = numext::round_down(9 * (size + 1) / 16, granularity); |
| return start + offset; |
| } |
| |
| template <typename DoFnType> |
| static void RunParallelFor(Index start, Index end, Index granularity, DoFnType&& do_func, ThreadPool* thread_pool) { |
| Index mid = ComputeMidpoint(start, end, granularity); |
| if ((end - start) < granularity || mid == start || mid == end) { |
| do_func(start, end); |
| return; |
| } |
| ForkJoin([start, mid, granularity, &do_func, thread_pool]() { |
| RunParallelFor(start, mid, granularity, do_func, thread_pool); |
| }, |
| [mid, end, granularity, &do_func, thread_pool]() { |
| RunParallelFor(mid, end, granularity, do_func, thread_pool); |
| }, |
| thread_pool); |
| } |
| }; |
| |
| } // namespace Eigen |
| |
| #endif // EIGEN_THREADPOOL_FORKJOIN_H |