| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| |
| // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum |
| // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n |
| extern "C" RealScalar EIGEN_BLAS_FUNC_NAME(asum)(int *n, Scalar *px, int *incx) { |
| // std::cerr << "_asum " << *n << " " << *incx << "\n"; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| if (*n <= 0) return 0; |
| |
| if (*incx == 1) |
| return make_vector(x, *n).cwiseAbs().sum(); |
| else |
| return make_vector(x, *n, std::abs(*incx)).cwiseAbs().sum(); |
| } |
| |
| extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, Scalar *px, int *incx) { |
| if (*n <= 0) return 0; |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| DenseIndex ret; |
| if (*incx == 1) |
| make_vector(x, *n).cwiseAbs().maxCoeff(&ret); |
| else |
| make_vector(x, *n, std::abs(*incx)).cwiseAbs().maxCoeff(&ret); |
| return int(ret) + 1; |
| } |
| |
| extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, Scalar *px, int *incx) { |
| if (*n <= 0) return 0; |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| DenseIndex ret; |
| if (*incx == 1) |
| make_vector(x, *n).cwiseAbs().minCoeff(&ret); |
| else |
| make_vector(x, *n, std::abs(*incx)).cwiseAbs().minCoeff(&ret); |
| return int(ret) + 1; |
| } |
| |
| // computes a vector-vector dot product. |
| extern "C" Scalar EIGEN_BLAS_FUNC_NAME(dot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy) { |
| // std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; |
| |
| if (*n <= 0) return 0; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| |
| if (*incx == 1 && *incy == 1) |
| return (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum(); |
| else if (*incx > 0 && *incy > 0) |
| return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum(); |
| else if (*incx < 0 && *incy > 0) |
| return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum(); |
| else if (*incx > 0 && *incy < 0) |
| return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); |
| else if (*incx < 0 && *incy < 0) |
| return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum(); |
| else |
| return 0; |
| } |
| |
| // computes the Euclidean norm of a vector. |
| // FIXME |
| extern "C" Scalar EIGEN_BLAS_FUNC_NAME(nrm2)(int *n, Scalar *px, int *incx) { |
| // std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; |
| if (*n <= 0) return 0; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| |
| if (*incx == 1) |
| return make_vector(x, *n).stableNorm(); |
| else |
| return make_vector(x, *n, std::abs(*incx)).stableNorm(); |
| } |
| |
| EIGEN_BLAS_FUNC(rot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pc, Scalar *ps) { |
| // std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; |
| if (*n <= 0) return; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar c = *reinterpret_cast<Scalar *>(pc); |
| Scalar s = *reinterpret_cast<Scalar *>(ps); |
| |
| StridedVectorType vx(make_vector(x, *n, std::abs(*incx))); |
| StridedVectorType vy(make_vector(y, *n, std::abs(*incy))); |
| |
| Reverse<StridedVectorType> rvx(vx); |
| Reverse<StridedVectorType> rvy(vy); |
| |
| if (*incx < 0 && *incy > 0) |
| internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c, s)); |
| else if (*incx > 0 && *incy < 0) |
| internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c, s)); |
| else |
| internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c, s)); |
| } |
| |
| /* |
| // performs rotation of points in the modified plane. |
| EIGEN_BLAS_FUNC(rotm)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *param) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| |
| // TODO |
| |
| return 0; |
| } |
| |
| // computes the modified parameters for a Givens rotation. |
| EIGEN_BLAS_FUNC(rotmg)(Scalar *d1, Scalar *d2, Scalar *x1, Scalar *x2, Scalar *param) |
| { |
| // TODO |
| |
| return 0; |
| } |
| */ |