| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| #include <iostream> |
| #include "common.h" |
| |
| EIGEN_BLAS_FUNC(gemm) |
| (const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha, |
| const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, |
| const int *ldc) { |
| // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << |
| // *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; |
| typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, |
| Scalar *, DenseIndex, DenseIndex, Scalar, Eigen::internal::level3_blocking<Scalar, Scalar> &, |
| Eigen::internal::GemmParallelInfo<DenseIndex> *); |
| static const functype func[12] = { |
| // array index: NOTR | (NOTR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, ColMajor, false, ColMajor, |
| 1>::run), |
| // array index: TR | (NOTR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, false, ColMajor, |
| 1>::run), |
| // array index: ADJ | (NOTR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, ColMajor, |
| 1>::run), |
| 0, |
| // array index: NOTR | (TR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, false, ColMajor, |
| 1>::run), |
| // array index: TR | (TR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, false, ColMajor, |
| 1>::run), |
| // array index: ADJ | (TR << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, false, ColMajor, |
| 1>::run), |
| 0, |
| // array index: NOTR | (ADJ << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, ColMajor, |
| 1>::run), |
| // array index: TR | (ADJ << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, Conj, ColMajor, |
| 1>::run), |
| // array index: ADJ | (ADJ << 2) |
| (internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, Conj, ColMajor, |
| 1>::run), |
| 0}; |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *b = reinterpret_cast<const Scalar *>(pb); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| int info = 0; |
| if (OP(*opa) == INVALID) |
| info = 1; |
| else if (OP(*opb) == INVALID) |
| info = 2; |
| else if (*m < 0) |
| info = 3; |
| else if (*n < 0) |
| info = 4; |
| else if (*k < 0) |
| info = 5; |
| else if (*lda < std::max(1, (OP(*opa) == NOTR) ? *m : *k)) |
| info = 8; |
| else if (*ldb < std::max(1, (OP(*opb) == NOTR) ? *k : *n)) |
| info = 10; |
| else if (*ldc < std::max(1, *m)) |
| info = 13; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "GEMM ", &info); |
| |
| if (*m == 0 || *n == 0) return; |
| |
| if (beta != Scalar(1)) { |
| if (beta == Scalar(0)) |
| matrix(c, *m, *n, *ldc).setZero(); |
| else |
| matrix(c, *m, *n, *ldc) *= beta; |
| } |
| |
| if (*k == 0) return; |
| |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, *k, 1, true); |
| |
| int code = OP(*opa) | (OP(*opb) << 2); |
| func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0); |
| } |
| |
| EIGEN_BLAS_FUNC(trsm) |
| (const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, |
| const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) { |
| // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " |
| // << *palpha << " " << *lda << " " << *ldb<< "\n"; |
| typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, |
| Eigen::internal::level3_blocking<Scalar, Scalar> &); |
| static const functype func[32] = { |
| // array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, ColMajor, ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, RowMajor, ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, Conj, RowMajor, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, ColMajor, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, RowMajor, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, Conj, RowMajor, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, ColMajor, ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, RowMajor, ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, Conj, RowMajor, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, ColMajor, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, RowMajor, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, Conj, RowMajor, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, ColMajor, ColMajor, |
| 1>::run), |
| // array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, RowMajor, ColMajor, |
| 1>::run), |
| // array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, Conj, RowMajor, ColMajor, |
| 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, ColMajor, ColMajor, |
| 1>::run), |
| // array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, RowMajor, ColMajor, |
| 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, Conj, RowMajor, ColMajor, |
| 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, ColMajor, ColMajor, |
| 1>::run), |
| // array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, RowMajor, ColMajor, |
| 1>::run), |
| // array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, Conj, RowMajor, ColMajor, |
| 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, ColMajor, ColMajor, |
| 1>::run), |
| // array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, RowMajor, ColMajor, |
| 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, Conj, RowMajor, ColMajor, |
| 1>::run), |
| 0}; |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| Scalar *b = reinterpret_cast<Scalar *>(pb); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| |
| int info = 0; |
| if (SIDE(*side) == INVALID) |
| info = 1; |
| else if (UPLO(*uplo) == INVALID) |
| info = 2; |
| else if (OP(*opa) == INVALID) |
| info = 3; |
| else if (DIAG(*diag) == INVALID) |
| info = 4; |
| else if (*m < 0) |
| info = 5; |
| else if (*n < 0) |
| info = 6; |
| else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) |
| info = 9; |
| else if (*ldb < std::max(1, *m)) |
| info = 11; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "TRSM ", &info); |
| |
| if (*m == 0 || *n == 0) return; |
| |
| int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| |
| if (SIDE(*side) == LEFT) { |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1, |
| false); |
| func[code](*m, *n, a, *lda, b, 1, *ldb, blocking); |
| } else { |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1, |
| false); |
| func[code](*n, *m, a, *lda, b, 1, *ldb, blocking); |
| } |
| |
| if (alpha != Scalar(1)) matrix(b, *m, *n, *ldb) *= alpha; |
| } |
| |
| // b = alpha*op(a)*b for side = 'L'or'l' |
| // b = alpha*b*op(a) for side = 'R'or'r' |
| EIGEN_BLAS_FUNC(trmm) |
| (const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, |
| const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) { |
| // std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " |
| // << *lda << " " << *ldb << " " << *palpha << "\n"; |
| typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, |
| Scalar *, DenseIndex, DenseIndex, const Scalar &, |
| internal::level3_blocking<Scalar, Scalar> &); |
| static const functype func[32] = { |
| // array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, ColMajor, false, ColMajor, false, |
| ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, false, ColMajor, false, |
| ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, Conj, ColMajor, false, |
| ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor, |
| false, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor, Conj, |
| ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, ColMajor, false, ColMajor, false, |
| ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, false, ColMajor, false, |
| ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, Conj, ColMajor, false, |
| ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor, |
| false, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor, Conj, |
| ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, ColMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, Conj, ColMajor, |
| false, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, |
| ColMajor, false, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, |
| RowMajor, false, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, |
| RowMajor, Conj, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, ColMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, false, ColMajor, |
| false, ColMajor, 1>::run), |
| // array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, Conj, ColMajor, |
| false, ColMajor, 1>::run), |
| 0, |
| // array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false, |
| ColMajor, false, ColMajor, 1>::run), |
| // array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, |
| RowMajor, false, ColMajor, 1>::run), |
| // array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4) |
| (internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false, |
| RowMajor, Conj, ColMajor, 1>::run), |
| 0}; |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| Scalar *b = reinterpret_cast<Scalar *>(pb); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| |
| int info = 0; |
| if (SIDE(*side) == INVALID) |
| info = 1; |
| else if (UPLO(*uplo) == INVALID) |
| info = 2; |
| else if (OP(*opa) == INVALID) |
| info = 3; |
| else if (DIAG(*diag) == INVALID) |
| info = 4; |
| else if (*m < 0) |
| info = 5; |
| else if (*n < 0) |
| info = 6; |
| else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) |
| info = 9; |
| else if (*ldb < std::max(1, *m)) |
| info = 11; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "TRMM ", &info); |
| |
| int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| |
| if (*m == 0 || *n == 0) return; |
| |
| // FIXME find a way to avoid this copy |
| Matrix<Scalar, Dynamic, Dynamic, ColMajor> tmp = matrix(b, *m, *n, *ldb); |
| matrix(b, *m, *n, *ldb).setZero(); |
| |
| if (SIDE(*side) == LEFT) { |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1, |
| false); |
| func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking); |
| } else { |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1, |
| false); |
| func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking); |
| } |
| } |
| |
| // c = alpha*a*b + beta*c for side = 'L'or'l' |
| // c = alpha*b*a + beta*c for side = 'R'or'r |
| EIGEN_BLAS_FUNC(symm) |
| (const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb |
| // << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *b = reinterpret_cast<const Scalar *>(pb); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| int info = 0; |
| if (SIDE(*side) == INVALID) |
| info = 1; |
| else if (UPLO(*uplo) == INVALID) |
| info = 2; |
| else if (*m < 0) |
| info = 3; |
| else if (*n < 0) |
| info = 4; |
| else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) |
| info = 7; |
| else if (*ldb < std::max(1, *m)) |
| info = 9; |
| else if (*ldc < std::max(1, *m)) |
| info = 12; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "SYMM ", &info); |
| |
| if (beta != Scalar(1)) { |
| if (beta == Scalar(0)) |
| matrix(c, *m, *n, *ldc).setZero(); |
| else |
| matrix(c, *m, *n, *ldc) *= beta; |
| } |
| |
| if (*m == 0 || *n == 0) return; |
| |
| int size = (SIDE(*side) == LEFT) ? (*m) : (*n); |
| #if ISCOMPLEX |
| // FIXME add support for symmetric complex matrix |
| Matrix<Scalar, Dynamic, Dynamic, ColMajor> matA(size, size); |
| if (UPLO(*uplo) == UP) { |
| matA.triangularView<Upper>() = matrix(a, size, size, *lda); |
| matA.triangularView<Lower>() = matrix(a, size, size, *lda).transpose(); |
| } else if (UPLO(*uplo) == LO) { |
| matA.triangularView<Lower>() = matrix(a, size, size, *lda); |
| matA.triangularView<Upper>() = matrix(a, size, size, *lda).transpose(); |
| } |
| if (SIDE(*side) == LEFT) |
| matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); |
| else if (SIDE(*side) == RIGHT) |
| matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; |
| #else |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false); |
| |
| if (SIDE(*side) == LEFT) |
| if (UPLO(*uplo) == UP) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, false, ColMajor, false, false, ColMajor, |
| 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); |
| else if (UPLO(*uplo) == LO) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor, |
| 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); |
| else |
| return; |
| else if (SIDE(*side) == RIGHT) |
| if (UPLO(*uplo) == UP) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, RowMajor, true, false, ColMajor, |
| 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); |
| else if (UPLO(*uplo) == LO) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor, |
| 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); |
| else |
| return; |
| else |
| return; |
| #endif |
| } |
| |
| // c = alpha*a*a' + beta*c for op = 'N'or'n' |
| // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' |
| EIGEN_BLAS_FUNC(syrk) |
| (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " |
| // << *pbeta << " " << *ldc << "\n"; |
| #if !ISCOMPLEX |
| typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, |
| DenseIndex, DenseIndex, const Scalar &, internal::level3_blocking<Scalar, Scalar> &); |
| static const functype func[8] = { |
| // array index: NOTR | (UP << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, |
| ColMajor, 1, Upper>::run), |
| // array index: TR | (UP << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj, |
| ColMajor, 1, Upper>::run), |
| // array index: ADJ | (UP << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, |
| ColMajor, 1, Upper>::run), |
| 0, |
| // array index: NOTR | (LO << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, |
| ColMajor, 1, Lower>::run), |
| // array index: TR | (LO << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj, |
| ColMajor, 1, Lower>::run), |
| // array index: ADJ | (LO << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, |
| ColMajor, 1, Lower>::run), |
| 0}; |
| #endif |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ)) |
| info = 2; |
| else if (*n < 0) |
| info = 3; |
| else if (*k < 0) |
| info = 4; |
| else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 7; |
| else if (*ldc < std::max(1, *n)) |
| info = 10; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "SYRK ", &info); |
| |
| if (beta != Scalar(1)) { |
| if (UPLO(*uplo) == UP) |
| if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; |
| else if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; |
| } |
| |
| if (*n == 0 || *k == 0) return; |
| |
| #if ISCOMPLEX |
| // FIXME add support for symmetric complex matrix |
| if (UPLO(*uplo) == UP) { |
| if (OP(*op) == NOTR) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda); |
| } else { |
| if (OP(*op) == NOTR) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda); |
| } |
| #else |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false); |
| |
| int code = OP(*op) | (UPLO(*uplo) << 2); |
| func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); |
| #endif |
| } |
| |
| // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' |
| // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' |
| EIGEN_BLAS_FUNC(syr2k) |
| (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *b = reinterpret_cast<const Scalar *>(pb); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| // std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " |
| // << *ldb << " " << beta << " " << *ldc << "\n"; |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ)) |
| info = 2; |
| else if (*n < 0) |
| info = 3; |
| else if (*k < 0) |
| info = 4; |
| else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 7; |
| else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 9; |
| else if (*ldc < std::max(1, *n)) |
| info = 12; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR2K", &info); |
| |
| if (beta != Scalar(1)) { |
| if (UPLO(*uplo) == UP) |
| if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; |
| else if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; |
| } |
| |
| if (*k == 0) return; |
| |
| if (OP(*op) == NOTR) { |
| if (UPLO(*uplo) == UP) { |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() + |
| alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose(); |
| } else if (UPLO(*uplo) == LO) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() + |
| alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose(); |
| } else if (OP(*op) == TR || OP(*op) == ADJ) { |
| if (UPLO(*uplo) == UP) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) + |
| alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda); |
| else if (UPLO(*uplo) == LO) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) + |
| alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda); |
| } |
| } |
| |
| #if ISCOMPLEX |
| |
| // c = alpha*a*b + beta*c for side = 'L'or'l' |
| // c = alpha*b*a + beta*c for side = 'R'or'r |
| EIGEN_BLAS_FUNC(hemm) |
| (const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *b = reinterpret_cast<const Scalar *>(pb); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " |
| // << beta << " " << *ldc << "\n"; |
| |
| int info = 0; |
| if (SIDE(*side) == INVALID) |
| info = 1; |
| else if (UPLO(*uplo) == INVALID) |
| info = 2; |
| else if (*m < 0) |
| info = 3; |
| else if (*n < 0) |
| info = 4; |
| else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n)) |
| info = 7; |
| else if (*ldb < std::max(1, *m)) |
| info = 9; |
| else if (*ldc < std::max(1, *m)) |
| info = 12; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMM ", &info); |
| |
| if (beta == Scalar(0)) |
| matrix(c, *m, *n, *ldc).setZero(); |
| else if (beta != Scalar(1)) |
| matrix(c, *m, *n, *ldc) *= beta; |
| |
| if (*m == 0 || *n == 0) return; |
| |
| int size = (SIDE(*side) == LEFT) ? (*m) : (*n); |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false); |
| |
| if (SIDE(*side) == LEFT) { |
| if (UPLO(*uplo) == UP) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, Conj, ColMajor, false, false, ColMajor, |
| 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); |
| else if (UPLO(*uplo) == LO) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor, |
| 1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); |
| else |
| return; |
| } else if (SIDE(*side) == RIGHT) { |
| if (UPLO(*uplo) == UP) |
| matrix(c, *m, *n, *ldc) += |
| alpha * matrix(b, *m, *n, *ldb) * |
| matrix(a, *n, *n, *lda) |
| .selfadjointView<Upper>(); /*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, |
| RowMajor,true,Conj, ColMajor, 1> |
| ::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/ |
| else if (UPLO(*uplo) == LO) |
| internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor, |
| 1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); |
| else |
| return; |
| } else { |
| return; |
| } |
| } |
| |
| // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' |
| // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' |
| EIGEN_BLAS_FUNC(herk) |
| (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " |
| // << *pbeta << " " << *ldc << "\n"; |
| |
| typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, |
| DenseIndex, DenseIndex, const Scalar &, Eigen::internal::level3_blocking<Scalar, Scalar> &); |
| static const functype func[8] = { |
| // array index: NOTR | (UP << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, |
| ColMajor, 1, Upper>::run), |
| 0, |
| // array index: ADJ | (UP << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, |
| ColMajor, 1, Upper>::run), |
| 0, |
| // array index: NOTR | (LO << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, |
| ColMajor, 1, Lower>::run), |
| 0, |
| // array index: ADJ | (LO << 2) |
| (internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, |
| ColMajor, 1, Lower>::run), |
| 0}; |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| RealScalar alpha = *palpha; |
| RealScalar beta = *pbeta; |
| |
| // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << |
| // beta << " " << *ldc << "\n"; |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if ((OP(*op) == INVALID) || (OP(*op) == TR)) |
| info = 2; |
| else if (*n < 0) |
| info = 3; |
| else if (*k < 0) |
| info = 4; |
| else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 7; |
| else if (*ldc < std::max(1, *n)) |
| info = 10; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HERK ", &info); |
| |
| int code = OP(*op) | (UPLO(*uplo) << 2); |
| |
| if (beta != RealScalar(1)) { |
| if (UPLO(*uplo) == UP) |
| if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; |
| else if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; |
| |
| if (beta != Scalar(0)) { |
| matrix(c, *n, *n, *ldc).diagonal().real() *= beta; |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| } |
| } |
| |
| if (*k > 0 && alpha != RealScalar(0)) { |
| internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false); |
| func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| } |
| } |
| |
| // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' |
| // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c' |
| EIGEN_BLAS_FUNC(her2k) |
| (const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa, |
| const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) { |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *b = reinterpret_cast<const Scalar *>(pb); |
| Scalar *c = reinterpret_cast<Scalar *>(pc); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| RealScalar beta = *pbeta; |
| |
| // std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " |
| // << *ldb << " " << beta << " " << *ldc << "\n"; |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if ((OP(*op) == INVALID) || (OP(*op) == TR)) |
| info = 2; |
| else if (*n < 0) |
| info = 3; |
| else if (*k < 0) |
| info = 4; |
| else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 7; |
| else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k)) |
| info = 9; |
| else if (*ldc < std::max(1, *n)) |
| info = 12; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2K", &info); |
| |
| if (beta != RealScalar(1)) { |
| if (UPLO(*uplo) == UP) |
| if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; |
| else if (beta == Scalar(0)) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| else |
| matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; |
| |
| if (beta != Scalar(0)) { |
| matrix(c, *n, *n, *ldc).diagonal().real() *= beta; |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| } |
| } else if (*k > 0 && alpha != Scalar(0)) |
| matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| |
| if (*k == 0) return; |
| |
| if (OP(*op) == NOTR) { |
| if (UPLO(*uplo) == UP) { |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() + |
| numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint(); |
| } else if (UPLO(*uplo) == LO) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() + |
| numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint(); |
| } else if (OP(*op) == ADJ) { |
| if (UPLO(*uplo) == UP) |
| matrix(c, *n, *n, *ldc).triangularView<Upper>() += |
| alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) + |
| numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda); |
| else if (UPLO(*uplo) == LO) |
| matrix(c, *n, *n, *ldc).triangularView<Lower>() += |
| alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) + |
| numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda); |
| } |
| } |
| |
| #endif // ISCOMPLEX |