| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| |
| using namespace std; |
| |
| // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers. |
| // It seems that it is not needed anymore, but let's keep it here, just in case... |
| |
| template <typename T> |
| EIGEN_DONT_INLINE void kill_extra_precision(T& /* x */) { |
| // This one worked but triggered a warning: |
| /* eigen_assert((void*)(&x) != (void*)0); */ |
| // An alternative could be: |
| /* volatile T tmp = x; */ |
| /* x = tmp; */ |
| } |
| |
| template <typename BoxType> |
| void alignedbox(const BoxType& box) { |
| /* this test covers the following files: |
| AlignedBox.h |
| */ |
| typedef typename BoxType::Scalar Scalar; |
| typedef NumTraits<Scalar> ScalarTraits; |
| typedef typename ScalarTraits::Real RealScalar; |
| typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; |
| |
| const Index dim = box.dim(); |
| |
| VectorType p0 = VectorType::Random(dim) / Scalar(2); |
| VectorType p1 = VectorType::Random(dim) / Scalar(2); |
| while (p1 == p0) { |
| p1 = VectorType::Random(dim) / Scalar(2); |
| } |
| RealScalar s1 = internal::random<RealScalar>(0, 1); |
| |
| BoxType b0(dim); |
| BoxType b1(VectorType::Random(dim), VectorType::Random(dim)); |
| BoxType b2; |
| |
| kill_extra_precision(b1); |
| kill_extra_precision(p0); |
| kill_extra_precision(p1); |
| |
| b0.extend(p0); |
| b0.extend(p1); |
| VERIFY(b0.contains(p0 * s1 + (Scalar(1) - s1) * p1)); |
| VERIFY(b0.contains(b0.center())); |
| VERIFY_IS_APPROX(b0.center(), (p0 + p1) / Scalar(2)); |
| |
| (b2 = b0).extend(b1); |
| VERIFY(b2.contains(b0)); |
| VERIFY(b2.contains(b1)); |
| VERIFY_IS_APPROX(b2.clamp(b0), b0); |
| |
| // intersection |
| BoxType box1(VectorType::Random(dim)); |
| box1.extend(VectorType::Random(dim)); |
| BoxType box2(VectorType::Random(dim)); |
| box2.extend(VectorType::Random(dim)); |
| |
| VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty()); |
| |
| // alignment -- make sure there is no memory alignment assertion |
| BoxType* bp0 = new BoxType(dim); |
| BoxType* bp1 = new BoxType(dim); |
| bp0->extend(*bp1); |
| delete bp0; |
| delete bp1; |
| |
| // sampling |
| for (int i = 0; i < 10; ++i) { |
| VectorType r = b0.sample(); |
| VERIFY(b0.contains(r)); |
| } |
| } |
| |
| template <typename BoxType> |
| void alignedboxTranslatable(const BoxType& box) { |
| typedef typename BoxType::Scalar Scalar; |
| typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; |
| typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform; |
| typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform; |
| |
| alignedbox(box); |
| |
| const VectorType Ones = VectorType::Ones(); |
| const VectorType UnitX = VectorType::UnitX(); |
| const Index dim = box.dim(); |
| |
| // box((-1, -1, -1), (1, 1, 1)) |
| BoxType a(-Ones, Ones); |
| |
| VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2)); |
| |
| BoxType b = a; |
| VectorType translate = Ones; |
| translate[0] = Scalar(2); |
| b.translate(translate); |
| // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2)) |
| |
| VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2)); |
| VERIFY_IS_APPROX((b.min)(), UnitX); |
| VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX); |
| |
| // Test transform |
| |
| IsometryTransform tf = IsometryTransform::Identity(); |
| tf.translation() = -translate; |
| |
| BoxType c = b.transformed(tf); |
| // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1)) |
| VERIFY_IS_APPROX(c.sizes(), a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), (a.min)()); |
| VERIFY_IS_APPROX((c.max)(), (a.max)()); |
| |
| c.transform(tf); |
| // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0)) |
| VERIFY_IS_APPROX(c.sizes(), a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX); |
| VERIFY_IS_APPROX((c.max)(), -UnitX); |
| |
| // Scaling |
| |
| AffineTransform atf = AffineTransform::Identity(); |
| atf.scale(Scalar(3)); |
| c.transform(atf); |
| // scale by 3 -> box((-9, -6, -6), (-3, 0, 0)) |
| VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3)); |
| VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3)); |
| |
| atf = AffineTransform::Identity(); |
| atf.scale(Scalar(-3)); |
| c.transform(atf); |
| // scale by -3 -> box((27, 18, 18), (9, 0, 0)) |
| VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9)); |
| VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9)); |
| |
| // Check identity transform within numerical precision. |
| BoxType transformedC = c.transformed(IsometryTransform::Identity()); |
| VERIFY_IS_APPROX(transformedC, c); |
| |
| for (size_t i = 0; i < 10; ++i) { |
| VectorType minCorner; |
| VectorType maxCorner; |
| for (Index d = 0; d < dim; ++d) { |
| minCorner[d] = internal::random<Scalar>(-10, 10); |
| maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); |
| } |
| |
| c = BoxType(minCorner, maxCorner); |
| |
| translate = VectorType::Random(); |
| c.translate(translate); |
| |
| VERIFY_IS_APPROX((c.min)(), minCorner + translate); |
| VERIFY_IS_APPROX((c.max)(), maxCorner + translate); |
| } |
| } |
| |
| template <typename Scalar, typename Rotation> |
| Rotation rotate2D(Scalar angle) { |
| return Rotation2D<Scalar>(angle); |
| } |
| |
| template <typename Scalar, typename Rotation> |
| Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) { |
| typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
| return Rotation2D<NonInteger>(angle).toRotationMatrix().template cast<Scalar>(); |
| } |
| |
| template <typename Scalar, typename Rotation> |
| Rotation rotate3DZAxis(Scalar angle) { |
| return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1)); |
| } |
| |
| template <typename Scalar, typename Rotation> |
| Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) { |
| typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
| return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).toRotationMatrix().template cast<Scalar>(); |
| } |
| |
| template <typename Scalar, typename Rotation> |
| Rotation rotate4DZWAxis(Scalar angle) { |
| Rotation result = Matrix<Scalar, 4, 4>::Identity(); |
| result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix(); |
| return result; |
| } |
| |
| template <typename MatrixType> |
| MatrixType randomRotationMatrix() { |
| // algorithm from |
| // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf |
| const MatrixType rand = MatrixType::Random(); |
| const MatrixType q = rand.householderQr().householderQ(); |
| const JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(q); |
| const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant(); |
| MatrixType diag = rand.Identity(); |
| diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det; |
| const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose(); |
| return rotation; |
| } |
| |
| template <typename Scalar, int Dim> |
| Matrix<Scalar, Dim, (1 << Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_) { |
| Matrix<Scalar, Dim, (1 << Dim)> result; |
| for (Index i = 0; i < (1 << Dim); ++i) { |
| for (Index j = 0; j < Dim; ++j) result(j, i) = (i & (Index(1) << j)) ? min_(j) : max_(j); |
| } |
| return result; |
| } |
| |
| template <typename BoxType, typename Rotation> |
| void alignedboxRotatable(const BoxType& box, |
| Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) { |
| alignedboxTranslatable(box); |
| |
| typedef typename BoxType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
| typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; |
| typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform; |
| typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform; |
| |
| const VectorType Zero = VectorType::Zero(); |
| const VectorType Ones = VectorType::Ones(); |
| const VectorType UnitX = VectorType::UnitX(); |
| const VectorType UnitY = VectorType::UnitY(); |
| // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions |
| const VectorType UnitZ = Ones - UnitX - UnitY; |
| |
| // in this kind of comments the 3D case values will be illustrated |
| // box((-1, -1, -1), (1, 1, 1)) |
| BoxType a(-Ones, Ones); |
| |
| // to allow templating this test for both 2D and 3D cases, we always set all |
| // but the first coordinate to the same value; so basically 3D case works as |
| // if you were looking at the scene from top |
| |
| VectorType minPoint = -2 * Ones; |
| minPoint[0] = -3; |
| VectorType maxPoint = Zero; |
| maxPoint[0] = -1; |
| BoxType c(minPoint, maxPoint); |
| // box((-3, -2, -2), (-1, 0, 0)) |
| |
| IsometryTransform tf2 = IsometryTransform::Identity(); |
| // for some weird reason the following statement has to be put separate from |
| // the following rotate call, otherwise precision problems arise... |
| Rotation rot = rotate(NonInteger(EIGEN_PI)); |
| tf2.rotate(rot); |
| |
| c.transform(tf2); |
| // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0)) |
| |
| VERIFY_IS_APPROX(c.sizes(), a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2)); |
| VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2)); |
| |
| rot = rotate(NonInteger(EIGEN_PI / 2)); |
| tf2.setIdentity(); |
| tf2.rotate(rot); |
| |
| c.transform(tf2); |
| // rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0)) |
| |
| VERIFY_IS_APPROX(c.sizes(), a.sizes()); |
| VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3)); |
| VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3)); |
| |
| // box((-1, -1, -1), (1, 1, 1)) |
| AffineTransform atf = AffineTransform::Identity(); |
| atf.linearExt()(0, 1) = Scalar(1); |
| c = BoxType(-Ones, Ones); |
| c.transform(atf); |
| // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1)) |
| |
| VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2)); |
| VERIFY_IS_APPROX((c.min)(), -Ones - UnitX); |
| VERIFY_IS_APPROX((c.max)(), Ones + UnitX); |
| } |
| |
| template <typename BoxType, typename Rotation> |
| void alignedboxNonIntegralRotatable( |
| const BoxType& box, Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) { |
| alignedboxRotatable(box, rotate); |
| |
| typedef typename BoxType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
| enum { Dim = BoxType::AmbientDimAtCompileTime }; |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType; |
| typedef Transform<Scalar, Dim, Isometry> IsometryTransform; |
| typedef Transform<Scalar, Dim, Affine> AffineTransform; |
| |
| const Index dim = box.dim(); |
| const VectorType Zero = VectorType::Zero(); |
| const VectorType Ones = VectorType::Ones(); |
| |
| VectorType minPoint = -2 * Ones; |
| minPoint[1] = 1; |
| VectorType maxPoint = Zero; |
| maxPoint[1] = 3; |
| BoxType c(minPoint, maxPoint); |
| // ((-2, 1, -2), (0, 3, 0)) |
| |
| VectorType cornerBL = (c.min)(); |
| VectorType cornerTR = (c.max)(); |
| VectorType cornerBR = (c.min)(); |
| cornerBR[0] = cornerTR[0]; |
| VectorType cornerTL = (c.max)(); |
| cornerTL[0] = cornerBL[0]; |
| |
| NonInteger angle = NonInteger(EIGEN_PI / 3); |
| Rotation rot = rotate(angle); |
| IsometryTransform tf2; |
| tf2.setIdentity(); |
| tf2.rotate(rot); |
| |
| c.transform(tf2); |
| // rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0)) |
| |
| cornerBL = tf2 * cornerBL; |
| cornerBR = tf2 * cornerBR; |
| cornerTL = tf2 * cornerTL; |
| cornerTR = tf2 * cornerTR; |
| |
| VectorType minCorner = Ones * Scalar(-2); |
| VectorType maxCorner = Zero; |
| minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0])); |
| maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0])); |
| minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1])); |
| maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1])); |
| |
| for (Index d = 2; d < dim; ++d) VERIFY_IS_APPROX(c.sizes()[d], Scalar(2)); |
| |
| VERIFY_IS_APPROX((c.min)(), minCorner); |
| VERIFY_IS_APPROX((c.max)(), maxCorner); |
| |
| VectorType minCornerValue = Ones * Scalar(-2); |
| VectorType maxCornerValue = Zero; |
| minCornerValue[0] = Scalar(Scalar(-sqrt(2 * 2 + 3 * 3)) * Scalar(cos(Scalar(atan(2.0 / 3.0)) - angle / 2))); |
| minCornerValue[1] = Scalar(Scalar(-sqrt(1 * 1 + 2 * 2)) * Scalar(sin(Scalar(atan(2.0 / 1.0)) - angle / 2))); |
| maxCornerValue[0] = Scalar(-sin(angle)); |
| maxCornerValue[1] = Scalar(3 * cos(angle)); |
| VERIFY_IS_APPROX((c.min)(), minCornerValue); |
| VERIFY_IS_APPROX((c.max)(), maxCornerValue); |
| |
| // randomized test - translate and rotate the box and compare to a box made of transformed vertices |
| for (size_t i = 0; i < 10; ++i) { |
| for (Index d = 0; d < dim; ++d) { |
| minCorner[d] = internal::random<Scalar>(-10, 10); |
| maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); |
| } |
| |
| c = BoxType(minCorner, maxCorner); |
| |
| CornersType corners = boxGetCorners(minCorner, maxCorner); |
| |
| typename AffineTransform::LinearMatrixType rotation = |
| randomRotationMatrix<typename AffineTransform::LinearMatrixType>(); |
| |
| tf2.setIdentity(); |
| tf2.rotate(rotation); |
| tf2.translate(VectorType::Random()); |
| |
| c.transform(tf2); |
| corners = tf2 * corners; |
| |
| minCorner = corners.rowwise().minCoeff(); |
| maxCorner = corners.rowwise().maxCoeff(); |
| |
| VERIFY_IS_APPROX((c.min)(), minCorner); |
| VERIFY_IS_APPROX((c.max)(), maxCorner); |
| } |
| |
| // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices |
| for (size_t i = 0; i < 10; ++i) { |
| for (Index d = 0; d < dim; ++d) { |
| minCorner[d] = internal::random<Scalar>(-10, 10); |
| maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); |
| } |
| |
| c = BoxType(minCorner, maxCorner); |
| |
| CornersType corners = boxGetCorners(minCorner, maxCorner); |
| |
| AffineTransform atf = AffineTransform::Identity(); |
| atf.linearExt() = AffineTransform::LinearPart::Random(); |
| atf.translate(VectorType::Random()); |
| |
| c.transform(atf); |
| corners = atf * corners; |
| |
| minCorner = corners.rowwise().minCoeff(); |
| maxCorner = corners.rowwise().maxCoeff(); |
| |
| VERIFY_IS_APPROX((c.min)(), minCorner); |
| VERIFY_IS_APPROX((c.max)(), maxCorner); |
| } |
| } |
| |
| template <typename BoxType> |
| void alignedboxCastTests(const BoxType& box) { |
| // casting |
| typedef typename BoxType::Scalar Scalar; |
| typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; |
| |
| const Index dim = box.dim(); |
| |
| VectorType p0 = VectorType::Random(dim); |
| VectorType p1 = VectorType::Random(dim); |
| |
| BoxType b0(dim); |
| |
| b0.extend(p0); |
| b0.extend(p1); |
| |
| const int Dim = BoxType::AmbientDimAtCompileTime; |
| typedef typename GetDifferentType<Scalar>::type OtherScalar; |
| AlignedBox<OtherScalar, Dim> hp1f = b0.template cast<OtherScalar>(); |
| VERIFY_IS_APPROX(hp1f.template cast<Scalar>(), b0); |
| AlignedBox<Scalar, Dim> hp1d = b0.template cast<Scalar>(); |
| VERIFY_IS_APPROX(hp1d.template cast<Scalar>(), b0); |
| } |
| |
| void specificTest1() { |
| Vector2f m; |
| m << -1.0f, -2.0f; |
| Vector2f M; |
| M << 1.0f, 5.0f; |
| |
| typedef AlignedBox2f BoxType; |
| BoxType box(m, M); |
| |
| Vector2f sides = M - m; |
| VERIFY_IS_APPROX(sides, box.sizes()); |
| VERIFY_IS_APPROX(sides[1], box.sizes()[1]); |
| VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff()); |
| VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff()); |
| |
| VERIFY_IS_APPROX(14.0f, box.volume()); |
| VERIFY_IS_APPROX(53.0f, box.diagonal().squaredNorm()); |
| VERIFY_IS_APPROX(std::sqrt(53.0f), box.diagonal().norm()); |
| |
| VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeft)); |
| VERIFY_IS_APPROX(M, box.corner(BoxType::TopRight)); |
| Vector2f bottomRight; |
| bottomRight << M[0], m[1]; |
| Vector2f topLeft; |
| topLeft << m[0], M[1]; |
| VERIFY_IS_APPROX(bottomRight, box.corner(BoxType::BottomRight)); |
| VERIFY_IS_APPROX(topLeft, box.corner(BoxType::TopLeft)); |
| } |
| |
| void specificTest2() { |
| Vector3i m; |
| m << -1, -2, 0; |
| Vector3i M; |
| M << 1, 5, 3; |
| |
| typedef AlignedBox3i BoxType; |
| BoxType box(m, M); |
| |
| Vector3i sides = M - m; |
| VERIFY_IS_APPROX(sides, box.sizes()); |
| VERIFY_IS_APPROX(sides[1], box.sizes()[1]); |
| VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff()); |
| VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff()); |
| |
| VERIFY_IS_APPROX(42, box.volume()); |
| VERIFY_IS_APPROX(62, box.diagonal().squaredNorm()); |
| |
| VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeftFloor)); |
| VERIFY_IS_APPROX(M, box.corner(BoxType::TopRightCeil)); |
| Vector3i bottomRightFloor; |
| bottomRightFloor << M[0], m[1], m[2]; |
| Vector3i topLeftFloor; |
| topLeftFloor << m[0], M[1], m[2]; |
| VERIFY_IS_APPROX(bottomRightFloor, box.corner(BoxType::BottomRightFloor)); |
| VERIFY_IS_APPROX(topLeftFloor, box.corner(BoxType::TopLeftFloor)); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_alignedbox) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1((alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D))); |
| CALL_SUBTEST_2(alignedboxCastTests(AlignedBox2f())); |
| |
| CALL_SUBTEST_3((alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis))); |
| CALL_SUBTEST_4(alignedboxCastTests(AlignedBox3f())); |
| |
| CALL_SUBTEST_5((alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis))); |
| CALL_SUBTEST_6(alignedboxCastTests(AlignedBox4d())); |
| |
| CALL_SUBTEST_7(alignedboxTranslatable(AlignedBox1d())); |
| CALL_SUBTEST_8(alignedboxCastTests(AlignedBox1d())); |
| |
| CALL_SUBTEST_9(alignedboxTranslatable(AlignedBox1i())); |
| CALL_SUBTEST_10((alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>))); |
| CALL_SUBTEST_11( |
| (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>))); |
| |
| CALL_SUBTEST_14(alignedbox(AlignedBox<double, Dynamic>(4))); |
| } |
| CALL_SUBTEST_12(specificTest1()); |
| CALL_SUBTEST_13(specificTest2()); |
| } |