blob: ac9b66d739ff900f6bbd5e7f1001afabf013ba3f [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <typename T, typename U>
bool check_if_equal_or_nans(const T& actual, const U& expected) {
return (numext::equal_strict(actual, expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
}
template <typename T, typename U>
bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) {
return check_if_equal_or_nans(numext::real(actual), numext::real(expected)) &&
check_if_equal_or_nans(numext::imag(actual), numext::imag(expected));
}
template <typename T, typename U>
bool test_is_equal_or_nans(const T& actual, const U& expected) {
if (check_if_equal_or_nans(actual, expected)) {
return true;
}
// false:
std::cerr << "\n actual = " << actual << "\n expected = " << expected << "\n\n";
return false;
}
#define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b))
template <typename T>
void check_abs() {
typedef typename NumTraits<T>::Real Real;
Real zero(0);
if (NumTraits<T>::IsSigned) VERIFY_IS_EQUAL(numext::abs(-T(1)), T(1));
VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));
for (int k = 0; k < 100; ++k) {
T x = internal::random<T>();
if (!internal::is_same<T, bool>::value) x = x / Real(2);
if (NumTraits<T>::IsSigned) {
VERIFY_IS_EQUAL(numext::abs(x), numext::abs(-x));
VERIFY(numext::abs(-x) >= zero);
}
VERIFY(numext::abs(x) >= zero);
VERIFY_IS_APPROX(numext::abs2(x), numext::abs2(numext::abs(x)));
}
}
template <typename T>
void check_arg() {
typedef typename NumTraits<T>::Real Real;
VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));
for (int k = 0; k < 100; ++k) {
T x = internal::random<T>();
Real y = numext::arg(x);
VERIFY_IS_APPROX(y, std::arg(x));
}
}
template <typename T>
struct check_sqrt_impl {
static void run() {
for (int i = 0; i < 1000; ++i) {
const T x = numext::abs(internal::random<T>());
const T sqrtx = numext::sqrt(x);
VERIFY_IS_APPROX(sqrtx * sqrtx, x);
}
// Corner cases.
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
VERIFY_IS_EQUAL(numext::sqrt(zero), zero);
VERIFY_IS_EQUAL(numext::sqrt(inf), inf);
VERIFY((numext::isnan)(numext::sqrt(nan)));
VERIFY((numext::isnan)(numext::sqrt(-one)));
}
};
template <typename T>
struct check_sqrt_impl<std::complex<T> > {
static void run() {
typedef typename std::complex<T> ComplexT;
for (int i = 0; i < 1000; ++i) {
const ComplexT x = internal::random<ComplexT>();
const ComplexT sqrtx = numext::sqrt(x);
VERIFY_IS_APPROX(sqrtx * sqrtx, x);
}
// Corner cases.
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
// Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt
const int kNumCorners = 20;
const ComplexT corners[kNumCorners][2] = {
{ComplexT(zero, zero), ComplexT(zero, zero)}, {ComplexT(-zero, zero), ComplexT(zero, zero)},
{ComplexT(zero, -zero), ComplexT(zero, zero)}, {ComplexT(-zero, -zero), ComplexT(zero, zero)},
{ComplexT(one, inf), ComplexT(inf, inf)}, {ComplexT(nan, inf), ComplexT(inf, inf)},
{ComplexT(one, -inf), ComplexT(inf, -inf)}, {ComplexT(nan, -inf), ComplexT(inf, -inf)},
{ComplexT(-inf, one), ComplexT(zero, inf)}, {ComplexT(inf, one), ComplexT(inf, zero)},
{ComplexT(-inf, -one), ComplexT(zero, -inf)}, {ComplexT(inf, -one), ComplexT(inf, -zero)},
{ComplexT(-inf, nan), ComplexT(nan, inf)}, {ComplexT(inf, nan), ComplexT(inf, nan)},
{ComplexT(zero, nan), ComplexT(nan, nan)}, {ComplexT(one, nan), ComplexT(nan, nan)},
{ComplexT(nan, zero), ComplexT(nan, nan)}, {ComplexT(nan, one), ComplexT(nan, nan)},
{ComplexT(nan, -one), ComplexT(nan, nan)}, {ComplexT(nan, nan), ComplexT(nan, nan)},
};
for (int i = 0; i < kNumCorners; ++i) {
const ComplexT& x = corners[i][0];
const ComplexT sqrtx = corners[i][1];
VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx);
}
}
};
template <typename T>
void check_sqrt() {
check_sqrt_impl<T>::run();
}
template <typename T>
struct check_rsqrt_impl {
static void run() {
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
for (int i = 0; i < 1000; ++i) {
const T x = numext::abs(internal::random<T>());
const T rsqrtx = numext::rsqrt(x);
const T invx = one / x;
VERIFY_IS_APPROX(rsqrtx * rsqrtx, invx);
}
// Corner cases.
VERIFY_IS_EQUAL(numext::rsqrt(zero), inf);
VERIFY_IS_EQUAL(numext::rsqrt(inf), zero);
VERIFY((numext::isnan)(numext::rsqrt(nan)));
VERIFY((numext::isnan)(numext::rsqrt(-one)));
}
};
template <typename T>
struct check_rsqrt_impl<std::complex<T> > {
static void run() {
typedef typename std::complex<T> ComplexT;
const T zero = T(0);
const T one = T(1);
const T inf = std::numeric_limits<T>::infinity();
const T nan = std::numeric_limits<T>::quiet_NaN();
for (int i = 0; i < 1000; ++i) {
const ComplexT x = internal::random<ComplexT>();
const ComplexT invx = ComplexT(one, zero) / x;
const ComplexT rsqrtx = numext::rsqrt(x);
VERIFY_IS_APPROX(rsqrtx * rsqrtx, invx);
}
// GCC and MSVC differ in their treatment of 1/(0 + 0i)
// GCC/clang = (inf, nan)
// MSVC = (nan, nan)
// and 1 / (x + inf i)
// GCC/clang = (0, 0)
// MSVC = (nan, nan)
#if (EIGEN_COMP_GNUC)
{
const int kNumCorners = 20;
const ComplexT corners[kNumCorners][2] = {
// Only consistent across GCC, clang
{ComplexT(zero, zero), ComplexT(zero, zero)},
{ComplexT(-zero, zero), ComplexT(zero, zero)},
{ComplexT(zero, -zero), ComplexT(zero, zero)},
{ComplexT(-zero, -zero), ComplexT(zero, zero)},
{ComplexT(one, inf), ComplexT(inf, inf)},
{ComplexT(nan, inf), ComplexT(inf, inf)},
{ComplexT(one, -inf), ComplexT(inf, -inf)},
{ComplexT(nan, -inf), ComplexT(inf, -inf)},
// Consistent across GCC, clang, MSVC
{ComplexT(-inf, one), ComplexT(zero, inf)},
{ComplexT(inf, one), ComplexT(inf, zero)},
{ComplexT(-inf, -one), ComplexT(zero, -inf)},
{ComplexT(inf, -one), ComplexT(inf, -zero)},
{ComplexT(-inf, nan), ComplexT(nan, inf)},
{ComplexT(inf, nan), ComplexT(inf, nan)},
{ComplexT(zero, nan), ComplexT(nan, nan)},
{ComplexT(one, nan), ComplexT(nan, nan)},
{ComplexT(nan, zero), ComplexT(nan, nan)},
{ComplexT(nan, one), ComplexT(nan, nan)},
{ComplexT(nan, -one), ComplexT(nan, nan)},
{ComplexT(nan, nan), ComplexT(nan, nan)},
};
for (int i = 0; i < kNumCorners; ++i) {
const ComplexT& x = corners[i][0];
const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1];
VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx);
}
}
#endif
}
};
template <typename T>
void check_rsqrt() {
check_rsqrt_impl<T>::run();
}
template <typename T>
struct check_signbit_impl {
static void run() {
T true_mask;
std::memset(static_cast<void*>(&true_mask), 0xff, sizeof(T));
T false_mask;
std::memset(static_cast<void*>(&false_mask), 0x00, sizeof(T));
std::vector<T> negative_values;
std::vector<T> non_negative_values;
if (NumTraits<T>::IsInteger) {
negative_values = {static_cast<T>(-1), static_cast<T>(NumTraits<T>::lowest())};
non_negative_values = {static_cast<T>(0), static_cast<T>(1), static_cast<T>(NumTraits<T>::highest())};
} else {
// has sign bit
const T neg_zero = static_cast<T>(-0.0);
const T neg_one = static_cast<T>(-1.0);
const T neg_inf = -std::numeric_limits<T>::infinity();
const T neg_nan = -std::numeric_limits<T>::quiet_NaN();
// does not have sign bit
const T pos_zero = static_cast<T>(0.0);
const T pos_one = static_cast<T>(1.0);
const T pos_inf = std::numeric_limits<T>::infinity();
const T pos_nan = std::numeric_limits<T>::quiet_NaN();
negative_values = {neg_zero, neg_one, neg_inf, neg_nan};
non_negative_values = {pos_zero, pos_one, pos_inf, pos_nan};
}
auto check_all = [](auto values, auto expected) {
bool all_pass = true;
for (T val : values) {
const T numext_val = numext::signbit(val);
bool not_same = internal::predux_any(internal::bitwise_helper<T>::bitwise_xor(expected, numext_val));
all_pass = all_pass && !not_same;
if (not_same) std::cout << "signbit(" << val << ") = " << numext_val << " != " << expected << std::endl;
}
return all_pass;
};
bool check_all_pass = check_all(non_negative_values, false_mask);
check_all_pass = check_all_pass && check_all(negative_values, (NumTraits<T>::IsSigned ? true_mask : false_mask));
VERIFY(check_all_pass);
}
};
template <typename T>
void check_signbit() {
check_signbit_impl<T>::run();
}
EIGEN_DECLARE_TEST(numext) {
for (int k = 0; k < g_repeat; ++k) {
CALL_SUBTEST(check_abs<bool>());
CALL_SUBTEST(check_abs<signed char>());
CALL_SUBTEST(check_abs<unsigned char>());
CALL_SUBTEST(check_abs<short>());
CALL_SUBTEST(check_abs<unsigned short>());
CALL_SUBTEST(check_abs<int>());
CALL_SUBTEST(check_abs<unsigned int>());
CALL_SUBTEST(check_abs<long>());
CALL_SUBTEST(check_abs<unsigned long>());
CALL_SUBTEST(check_abs<half>());
CALL_SUBTEST(check_abs<bfloat16>());
CALL_SUBTEST(check_abs<float>());
CALL_SUBTEST(check_abs<double>());
CALL_SUBTEST(check_abs<long double>());
CALL_SUBTEST(check_abs<std::complex<float> >());
CALL_SUBTEST(check_abs<std::complex<double> >());
CALL_SUBTEST(check_arg<std::complex<float> >());
CALL_SUBTEST(check_arg<std::complex<double> >());
CALL_SUBTEST(check_sqrt<float>());
CALL_SUBTEST(check_sqrt<double>());
CALL_SUBTEST(check_sqrt<std::complex<float> >());
CALL_SUBTEST(check_sqrt<std::complex<double> >());
CALL_SUBTEST(check_rsqrt<float>());
CALL_SUBTEST(check_rsqrt<double>());
CALL_SUBTEST(check_rsqrt<std::complex<float> >());
CALL_SUBTEST(check_rsqrt<std::complex<double> >());
CALL_SUBTEST(check_signbit<half>());
CALL_SUBTEST(check_signbit<bfloat16>());
CALL_SUBTEST(check_signbit<float>());
CALL_SUBTEST(check_signbit<double>());
CALL_SUBTEST(check_signbit<uint8_t>());
CALL_SUBTEST(check_signbit<uint16_t>());
CALL_SUBTEST(check_signbit<uint32_t>());
CALL_SUBTEST(check_signbit<uint64_t>());
CALL_SUBTEST(check_signbit<int8_t>());
CALL_SUBTEST(check_signbit<int16_t>());
CALL_SUBTEST(check_signbit<int32_t>());
CALL_SUBTEST(check_signbit<int64_t>());
}
}