| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CHOLMODSUPPORT_H |
| #define EIGEN_CHOLMODSUPPORT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename Scalar> struct cholmod_configure_matrix; |
| |
| template<> struct cholmod_configure_matrix<double> { |
| template<typename CholmodType> |
| static void run(CholmodType& mat) { |
| mat.xtype = CHOLMOD_REAL; |
| mat.dtype = CHOLMOD_DOUBLE; |
| } |
| }; |
| |
| template<> struct cholmod_configure_matrix<std::complex<double> > { |
| template<typename CholmodType> |
| static void run(CholmodType& mat) { |
| mat.xtype = CHOLMOD_COMPLEX; |
| mat.dtype = CHOLMOD_DOUBLE; |
| } |
| }; |
| |
| // Other scalar types are not yet supported by Cholmod |
| // template<> struct cholmod_configure_matrix<float> { |
| // template<typename CholmodType> |
| // static void run(CholmodType& mat) { |
| // mat.xtype = CHOLMOD_REAL; |
| // mat.dtype = CHOLMOD_SINGLE; |
| // } |
| // }; |
| // |
| // template<> struct cholmod_configure_matrix<std::complex<float> > { |
| // template<typename CholmodType> |
| // static void run(CholmodType& mat) { |
| // mat.xtype = CHOLMOD_COMPLEX; |
| // mat.dtype = CHOLMOD_SINGLE; |
| // } |
| // }; |
| |
| } // namespace internal |
| |
| /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. |
| * Note that the data are shared. |
| */ |
| template<typename Scalar_, int Options_, typename StorageIndex_> |
| cholmod_sparse viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,StorageIndex_> > mat) |
| { |
| cholmod_sparse res; |
| res.nzmax = mat.nonZeros(); |
| res.nrow = mat.rows(); |
| res.ncol = mat.cols(); |
| res.p = mat.outerIndexPtr(); |
| res.i = mat.innerIndexPtr(); |
| res.x = mat.valuePtr(); |
| res.z = 0; |
| res.sorted = 1; |
| if(mat.isCompressed()) |
| { |
| res.packed = 1; |
| res.nz = 0; |
| } |
| else |
| { |
| res.packed = 0; |
| res.nz = mat.innerNonZeroPtr(); |
| } |
| |
| res.dtype = 0; |
| res.stype = -1; |
| |
| if (internal::is_same<StorageIndex_,int>::value) |
| { |
| res.itype = CHOLMOD_INT; |
| } |
| else if (internal::is_same<StorageIndex_,SuiteSparse_long>::value) |
| { |
| res.itype = CHOLMOD_LONG; |
| } |
| else |
| { |
| eigen_assert(false && "Index type not supported yet"); |
| } |
| |
| // setup res.xtype |
| internal::cholmod_configure_matrix<Scalar_>::run(res); |
| |
| res.stype = 0; |
| |
| return res; |
| } |
| |
| template<typename Scalar_, int Options_, typename Index_> |
| const cholmod_sparse viewAsCholmod(const SparseMatrix<Scalar_,Options_,Index_>& mat) |
| { |
| cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived())); |
| return res; |
| } |
| |
| template<typename Scalar_, int Options_, typename Index_> |
| const cholmod_sparse viewAsCholmod(const SparseVector<Scalar_,Options_,Index_>& mat) |
| { |
| cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived())); |
| return res; |
| } |
| |
| /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. |
| * The data are not copied but shared. */ |
| template<typename Scalar_, int Options_, typename Index_, unsigned int UpLo> |
| cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<Scalar_,Options_,Index_>, UpLo>& mat) |
| { |
| cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.matrix().const_cast_derived())); |
| |
| if(UpLo==Upper) res.stype = 1; |
| if(UpLo==Lower) res.stype = -1; |
| // swap stype for rowmajor matrices (only works for real matrices) |
| EIGEN_STATIC_ASSERT((Options_ & RowMajorBit) == 0 || NumTraits<Scalar_>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); |
| if(Options_ & RowMajorBit) res.stype *=-1; |
| |
| return res; |
| } |
| |
| /** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. |
| * The data are not copied but shared. */ |
| template<typename Derived> |
| cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) |
| { |
| EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); |
| typedef typename Derived::Scalar Scalar; |
| |
| cholmod_dense res; |
| res.nrow = mat.rows(); |
| res.ncol = mat.cols(); |
| res.nzmax = res.nrow * res.ncol; |
| res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); |
| res.x = (void*)(mat.derived().data()); |
| res.z = 0; |
| |
| internal::cholmod_configure_matrix<Scalar>::run(res); |
| |
| return res; |
| } |
| |
| /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. |
| * The data are not copied but shared. */ |
| template<typename Scalar, int Flags, typename StorageIndex> |
| MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm) |
| { |
| return MappedSparseMatrix<Scalar,Flags,StorageIndex> |
| (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol], |
| static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) ); |
| } |
| |
| namespace internal { |
| |
| // template specializations for int and long that call the correct cholmod method |
| |
| #define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \ |
| template<typename StorageIndex_> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \ |
| template<> inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); } |
| |
| #define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \ |
| template<typename StorageIndex_> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \ |
| template<> inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); } |
| |
| EIGEN_CHOLMOD_SPECIALIZE0(int, start) |
| EIGEN_CHOLMOD_SPECIALIZE0(int, finish) |
| |
| EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L) |
| EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense, cholmod_dense*, X) |
| EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A) |
| |
| EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A) |
| |
| template<typename StorageIndex_> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); } |
| template<> inline cholmod_dense* cm_solve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); } |
| |
| template<typename StorageIndex_> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); } |
| template<> inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); } |
| |
| template<typename StorageIndex_> |
| inline int cm_factorize_p (cholmod_sparse* A, double beta[2], StorageIndex_* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); } |
| template<> |
| inline int cm_factorize_p<SuiteSparse_long> (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); } |
| |
| #undef EIGEN_CHOLMOD_SPECIALIZE0 |
| #undef EIGEN_CHOLMOD_SPECIALIZE1 |
| |
| } // namespace internal |
| |
| |
| enum CholmodMode { |
| CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt |
| }; |
| |
| |
| /** \ingroup CholmodSupport_Module |
| * \class CholmodBase |
| * \brief The base class for the direct Cholesky factorization of Cholmod |
| * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT |
| */ |
| template<typename MatrixType_, int UpLo_, typename Derived> |
| class CholmodBase : public SparseSolverBase<Derived> |
| { |
| protected: |
| typedef SparseSolverBase<Derived> Base; |
| using Base::derived; |
| using Base::m_isInitialized; |
| public: |
| typedef MatrixType_ MatrixType; |
| enum { UpLo = UpLo_ }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef MatrixType CholMatrixType; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| enum { |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| public: |
| |
| CholmodBase() |
| : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) |
| { |
| EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); |
| m_shiftOffset[0] = m_shiftOffset[1] = 0.0; |
| internal::cm_start<StorageIndex>(m_cholmod); |
| } |
| |
| explicit CholmodBase(const MatrixType& matrix) |
| : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) |
| { |
| EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); |
| m_shiftOffset[0] = m_shiftOffset[1] = 0.0; |
| internal::cm_start<StorageIndex>(m_cholmod); |
| compute(matrix); |
| } |
| |
| ~CholmodBase() |
| { |
| if(m_cholmodFactor) |
| internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod); |
| internal::cm_finish<StorageIndex>(m_cholmod); |
| } |
| |
| inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } |
| inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the matrix.appears to be negative. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return m_info; |
| } |
| |
| /** Computes the sparse Cholesky decomposition of \a matrix */ |
| Derived& compute(const MatrixType& matrix) |
| { |
| analyzePattern(matrix); |
| factorize(matrix); |
| return derived(); |
| } |
| |
| /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. |
| * |
| * This function is particularly useful when solving for several problems having the same structure. |
| * |
| * \sa factorize() |
| */ |
| void analyzePattern(const MatrixType& matrix) |
| { |
| if(m_cholmodFactor) |
| { |
| internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod); |
| m_cholmodFactor = 0; |
| } |
| cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); |
| m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod); |
| |
| this->m_isInitialized = true; |
| this->m_info = Success; |
| m_analysisIsOk = true; |
| m_factorizationIsOk = false; |
| } |
| |
| /** Performs a numeric decomposition of \a matrix |
| * |
| * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. |
| * |
| * \sa analyzePattern() |
| */ |
| void factorize(const MatrixType& matrix) |
| { |
| eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
| cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); |
| internal::cm_factorize_p<StorageIndex>(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod); |
| |
| // If the factorization failed, minor is the column at which it did. On success minor == n. |
| this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); |
| m_factorizationIsOk = true; |
| } |
| |
| /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. |
| * See the Cholmod user guide for details. */ |
| cholmod_common& cholmod() { return m_cholmod; } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
| { |
| eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| const Index size = m_cholmodFactor->n; |
| EIGEN_UNUSED_VARIABLE(size); |
| eigen_assert(size==b.rows()); |
| |
| // Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref. |
| Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived()); |
| |
| cholmod_dense b_cd = viewAsCholmod(b_ref); |
| cholmod_dense* x_cd = internal::cm_solve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod); |
| if(!x_cd) |
| { |
| this->m_info = NumericalIssue; |
| return; |
| } |
| // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) |
| // NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve |
| dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols()); |
| internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod); |
| } |
| |
| /** \internal */ |
| template<typename RhsDerived, typename DestDerived> |
| void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const |
| { |
| eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| const Index size = m_cholmodFactor->n; |
| EIGEN_UNUSED_VARIABLE(size); |
| eigen_assert(size==b.rows()); |
| |
| // note: cs stands for Cholmod Sparse |
| Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived()); |
| cholmod_sparse b_cs = viewAsCholmod(b_ref); |
| cholmod_sparse* x_cs = internal::cm_spsolve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod); |
| if(!x_cs) |
| { |
| this->m_info = NumericalIssue; |
| return; |
| } |
| // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) |
| // NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's sparse solver) |
| dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs); |
| internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod); |
| } |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| |
| |
| /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. |
| * |
| * During the numerical factorization, an offset term is added to the diagonal coefficients:\n |
| * \c d_ii = \a offset + \c d_ii |
| * |
| * The default is \a offset=0. |
| * |
| * \returns a reference to \c *this. |
| */ |
| Derived& setShift(const RealScalar& offset) |
| { |
| m_shiftOffset[0] = double(offset); |
| return derived(); |
| } |
| |
| /** \returns the determinant of the underlying matrix from the current factorization */ |
| Scalar determinant() const |
| { |
| using std::exp; |
| return exp(logDeterminant()); |
| } |
| |
| /** \returns the log determinant of the underlying matrix from the current factorization */ |
| Scalar logDeterminant() const |
| { |
| using std::log; |
| using numext::real; |
| eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| |
| RealScalar logDet = 0; |
| Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x); |
| if (m_cholmodFactor->is_super) |
| { |
| // Supernodal factorization stored as a packed list of dense column-major blocs, |
| // as described by the following structure: |
| |
| // super[k] == index of the first column of the j-th super node |
| StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super); |
| // pi[k] == offset to the description of row indices |
| StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi); |
| // px[k] == offset to the respective dense block |
| StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px); |
| |
| Index nb_super_nodes = m_cholmodFactor->nsuper; |
| for (Index k=0; k < nb_super_nodes; ++k) |
| { |
| StorageIndex ncols = super[k + 1] - super[k]; |
| StorageIndex nrows = pi[k + 1] - pi[k]; |
| |
| Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1)); |
| logDet += sk.real().log().sum(); |
| } |
| } |
| else |
| { |
| // Simplicial factorization stored as standard CSC matrix. |
| StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p); |
| Index size = m_cholmodFactor->n; |
| for (Index k=0; k<size; ++k) |
| logDet += log(real( x[p[k]] )); |
| } |
| if (m_cholmodFactor->is_ll) |
| logDet *= 2.0; |
| return logDet; |
| }; |
| |
| template<typename Stream> |
| void dumpMemory(Stream& /*s*/) |
| {} |
| |
| protected: |
| mutable cholmod_common m_cholmod; |
| cholmod_factor* m_cholmodFactor; |
| double m_shiftOffset[2]; |
| mutable ComputationInfo m_info; |
| int m_factorizationIsOk; |
| int m_analysisIsOk; |
| }; |
| |
| /** \ingroup CholmodSupport_Module |
| * \class CholmodSimplicialLLT |
| * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod |
| * |
| * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization |
| * using the Cholmod library. |
| * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. |
| * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices |
| * X and B can be either dense or sparse. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \implsparsesolverconcept |
| * |
| * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
| * |
| * \warning Only double precision real and complex scalar types are supported by Cholmod. |
| * |
| * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT |
| */ |
| template<typename MatrixType_, int UpLo_ = Lower> |
| class CholmodSimplicialLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT<MatrixType_, UpLo_> > |
| { |
| typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT> Base; |
| using Base::m_cholmod; |
| |
| public: |
| |
| typedef MatrixType_ MatrixType; |
| |
| CholmodSimplicialLLT() : Base() { init(); } |
| |
| CholmodSimplicialLLT(const MatrixType& matrix) : Base() |
| { |
| init(); |
| this->compute(matrix); |
| } |
| |
| ~CholmodSimplicialLLT() {} |
| protected: |
| void init() |
| { |
| m_cholmod.final_asis = 0; |
| m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
| m_cholmod.final_ll = 1; |
| } |
| }; |
| |
| |
| /** \ingroup CholmodSupport_Module |
| * \class CholmodSimplicialLDLT |
| * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod |
| * |
| * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization |
| * using the Cholmod library. |
| * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. |
| * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices |
| * X and B can be either dense or sparse. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \implsparsesolverconcept |
| * |
| * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
| * |
| * \warning Only double precision real and complex scalar types are supported by Cholmod. |
| * |
| * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT |
| */ |
| template<typename MatrixType_, int UpLo_ = Lower> |
| class CholmodSimplicialLDLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT<MatrixType_, UpLo_> > |
| { |
| typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT> Base; |
| using Base::m_cholmod; |
| |
| public: |
| |
| typedef MatrixType_ MatrixType; |
| |
| CholmodSimplicialLDLT() : Base() { init(); } |
| |
| CholmodSimplicialLDLT(const MatrixType& matrix) : Base() |
| { |
| init(); |
| this->compute(matrix); |
| } |
| |
| ~CholmodSimplicialLDLT() {} |
| protected: |
| void init() |
| { |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
| } |
| }; |
| |
| /** \ingroup CholmodSupport_Module |
| * \class CholmodSupernodalLLT |
| * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod |
| * |
| * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization |
| * using the Cholmod library. |
| * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. |
| * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices |
| * X and B can be either dense or sparse. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \implsparsesolverconcept |
| * |
| * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
| * |
| * \warning Only double precision real and complex scalar types are supported by Cholmod. |
| * |
| * \sa \ref TutorialSparseSolverConcept |
| */ |
| template<typename MatrixType_, int UpLo_ = Lower> |
| class CholmodSupernodalLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT<MatrixType_, UpLo_> > |
| { |
| typedef CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT> Base; |
| using Base::m_cholmod; |
| |
| public: |
| |
| typedef MatrixType_ MatrixType; |
| |
| CholmodSupernodalLLT() : Base() { init(); } |
| |
| CholmodSupernodalLLT(const MatrixType& matrix) : Base() |
| { |
| init(); |
| this->compute(matrix); |
| } |
| |
| ~CholmodSupernodalLLT() {} |
| protected: |
| void init() |
| { |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_SUPERNODAL; |
| } |
| }; |
| |
| /** \ingroup CholmodSupport_Module |
| * \class CholmodDecomposition |
| * \brief A general Cholesky factorization and solver based on Cholmod |
| * |
| * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization |
| * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices |
| * X and B can be either dense or sparse. |
| * |
| * This variant permits to change the underlying Cholesky method at runtime. |
| * On the other hand, it does not provide access to the result of the factorization. |
| * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \implsparsesolverconcept |
| * |
| * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. |
| * |
| * \warning Only double precision real and complex scalar types are supported by Cholmod. |
| * |
| * \sa \ref TutorialSparseSolverConcept |
| */ |
| template<typename MatrixType_, int UpLo_ = Lower> |
| class CholmodDecomposition : public CholmodBase<MatrixType_, UpLo_, CholmodDecomposition<MatrixType_, UpLo_> > |
| { |
| typedef CholmodBase<MatrixType_, UpLo_, CholmodDecomposition> Base; |
| using Base::m_cholmod; |
| |
| public: |
| |
| typedef MatrixType_ MatrixType; |
| |
| CholmodDecomposition() : Base() { init(); } |
| |
| CholmodDecomposition(const MatrixType& matrix) : Base() |
| { |
| init(); |
| this->compute(matrix); |
| } |
| |
| ~CholmodDecomposition() {} |
| |
| void setMode(CholmodMode mode) |
| { |
| switch(mode) |
| { |
| case CholmodAuto: |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_AUTO; |
| break; |
| case CholmodSimplicialLLt: |
| m_cholmod.final_asis = 0; |
| m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
| m_cholmod.final_ll = 1; |
| break; |
| case CholmodSupernodalLLt: |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_SUPERNODAL; |
| break; |
| case CholmodLDLt: |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; |
| break; |
| default: |
| break; |
| } |
| } |
| protected: |
| void init() |
| { |
| m_cholmod.final_asis = 1; |
| m_cholmod.supernodal = CHOLMOD_AUTO; |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CHOLMODSUPPORT_H |