blob: 37fcdb59119ff83758ce004d7526b69a73dbb275 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H
namespace Eigen {
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}
/** \brief Base class providing read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
*
* \note #ReadOnlyAccessors Constant indicating read-only access
*
* This class defines the \c operator() \c const function and friends, which can be used to read specific
* entries of a matrix or array.
*
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
* \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
// Explanation for this CoeffReturnType typedef.
// - This is the return type of the coeff() method.
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
const Scalar&,
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
>::type CoeffReturnType;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef EigenBase<Derived> Base;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::RowsAtCompileTime) == 1 ? 0
: int(Derived::ColsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::ColsAtCompileTime) == 1 ? 0
: int(Derived::RowsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? inner
: outer;
}
/** Short version: don't use this function, use
* \link operator()(Index,Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) const \endlink.
*
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
{
return coeff(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(Index,Index), operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameter \a index is in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) const \endlink.
*
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
coeff(Index index) const
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeff(index);
}
/** \returns the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** \returns the coefficient at given index.
*
* This is synonymous to operator[](Index) const.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
x() const { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
y() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
return (*this)[1];
}
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
z() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
return (*this)[2];
}
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
w() const
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
return (*this)[3];
}
/** \internal
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(row,col);
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \internal
* \returns the packet of coefficients starting at the given index. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(index);
}
protected:
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
// But some methods are only available in the DirectAccess case.
// So we add dummy methods here with these names, so that "using... " doesn't fail.
// It's not private so that the child class DenseBase can access them, and it's not public
// either since it's an implementation detail, so has to be protected.
void coeffRef();
void coeffRefByOuterInner();
void writePacket();
void writePacketByOuterInner();
void copyCoeff();
void copyCoeffByOuterInner();
void copyPacket();
void copyPacketByOuterInner();
void stride();
void innerStride();
void outerStride();
void rowStride();
void colStride();
};
/** \brief Base class providing read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
*
* \note #WriteAccessors Constant indicating read/write access
*
* This class defines the non-const \c operator() function and friends, which can be used to write specific
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
* defines the const variant for reading specific entries.
*
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::coeff;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::operator[];
using Base::operator();
using Base::x;
using Base::y;
using Base::z;
using Base::w;
/** Short version: don't use this function, use
* \link operator()(Index,Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) \endlink.
*
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeffRef(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRefByOuterInner(Index outer, Index inner)
{
return coeffRef(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) \endlink.
*
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRef(Index index)
{
EIGEN_STATIC_ASSERT(internal::evaluator<Derived>::Flags & LinearAccessBit,
THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS)
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This is synonymous to operator[](Index).
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
x() { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
y()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS);
return (*this)[1];
}
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
z()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS);
return (*this)[2];
}
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
w()
{
EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS);
return (*this)[3];
}
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
*
* \note #DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
* \c operator() .
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
EIGEN_CONSTEXPR inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
*
* \note #DirectWriteAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
* \c operator().
*
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
: public DenseCoeffsBase<Derived, WriteAccessors>
{
public:
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index innerStride() const EIGEN_NOEXCEPT
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index outerStride() const EIGEN_NOEXCEPT
{
return derived().outerStride();
}
// FIXME shall we remove it ?
EIGEN_CONSTEXPR inline Index stride() const EIGEN_NOEXCEPT
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rowStride() const EIGEN_NOEXCEPT
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index colStride() const EIGEN_NOEXCEPT
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
namespace internal {
template<int Alignment, typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
static EIGEN_CONSTEXPR inline Index run(const Derived&) EIGEN_NOEXCEPT
{ return 0; }
};
template<int Alignment, typename Derived>
struct first_aligned_impl<Alignment, Derived, false>
{
static inline Index run(const Derived& m)
{
return internal::first_aligned<Alignment>(m.data(), m.size());
}
};
/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization.
*
* \tparam Alignment requested alignment in Bytes.
*
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
* documentation.
*/
template<int Alignment, typename Derived>
static inline Index first_aligned(const DenseBase<Derived>& m)
{
enum { ReturnZero = (int(evaluator<Derived>::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) };
return first_aligned_impl<Alignment, Derived, ReturnZero>::run(m.derived());
}
template<typename Derived>
static inline Index first_default_aligned(const DenseBase<Derived>& m)
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type DefaultPacketType;
return internal::first_aligned<int(unpacket_traits<DefaultPacketType>::alignment),Derived>(m);
}
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};
template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};
template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_DENSECOEFFSBASE_H