blob: 00bcca87768eba2f48d31759a14a3c42beb3f6b1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_VISITOR_H
#define EIGEN_VISITOR_H
namespace Eigen {
namespace internal {
template<typename Visitor, typename Derived, int UnrollCount>
struct visitor_impl
{
enum {
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
EIGEN_DEVICE_FUNC
static inline void run(const Derived &mat, Visitor& visitor)
{
visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
visitor(mat.coeff(row, col), row, col);
}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, 1>
{
EIGEN_DEVICE_FUNC
static inline void run(const Derived &mat, Visitor& visitor)
{
return visitor.init(mat.coeff(0, 0), 0, 0);
}
};
// This specialization enables visitors on empty matrices at compile-time
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, 0> {
EIGEN_DEVICE_FUNC
static inline void run(const Derived &/*mat*/, Visitor& /*visitor*/)
{}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, Dynamic>
{
EIGEN_DEVICE_FUNC
static inline void run(const Derived& mat, Visitor& visitor)
{
visitor.init(mat.coeff(0,0), 0, 0);
for(Index i = 1; i < mat.rows(); ++i)
visitor(mat.coeff(i, 0), i, 0);
for(Index j = 1; j < mat.cols(); ++j)
for(Index i = 0; i < mat.rows(); ++i)
visitor(mat.coeff(i, j), i, j);
}
};
// evaluator adaptor
template<typename XprType>
class visitor_evaluator
{
public:
EIGEN_DEVICE_FUNC
explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = XprType::RowsAtCompileTime,
CoeffReadCost = internal::evaluator<XprType>::CoeffReadCost
};
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_xpr.cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_xpr.size(); }
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{ return m_evaluator.coeff(row, col); }
protected:
internal::evaluator<XprType> m_evaluator;
const XprType &m_xpr;
};
} // end namespace internal
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
*
* The template parameter \a Visitor is the type of the visitor and provides the following interface:
* \code
* struct MyVisitor {
* // called for the first coefficient
* void init(const Scalar& value, Index i, Index j);
* // called for all other coefficients
* void operator() (const Scalar& value, Index i, Index j);
* };
* \endcode
*
* \note compared to one or two \em for \em loops, visitors offer automatic
* unrolling for small fixed size matrix.
*
* \note if the matrix is empty, then the visitor is left unchanged.
*
* \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux()
*/
template<typename Derived>
template<typename Visitor>
EIGEN_DEVICE_FUNC
void DenseBase<Derived>::visit(Visitor& visitor) const
{
if(size()==0)
return;
typedef typename internal::visitor_evaluator<Derived> ThisEvaluator;
ThisEvaluator thisEval(derived());
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * int(ThisEvaluator::CoeffReadCost) + (SizeAtCompileTime-1) * int(internal::functor_traits<Visitor>::Cost) <= EIGEN_UNROLLING_LIMIT
};
return internal::visitor_impl<Visitor, ThisEvaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(thisEval, visitor);
}
namespace internal {
/** \internal
* \brief Base class to implement min and max visitors
*/
template <typename Derived>
struct coeff_visitor
{
// default initialization to avoid countless invalid maybe-uninitialized warnings by gcc
EIGEN_DEVICE_FUNC
coeff_visitor() : row(-1), col(-1), res(0) {}
typedef typename Derived::Scalar Scalar;
Index row, col;
Scalar res;
EIGEN_DEVICE_FUNC
inline void init(const Scalar& value, Index i, Index j)
{
res = value;
row = i;
col = j;
}
};
/** \internal
* \brief Visitor computing the min coefficient with its value and coordinates
*
* \sa DenseBase::minCoeff(Index*, Index*)
*/
template <typename Derived, int NaNPropagation>
struct min_coeff_visitor : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if(value < this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template <typename Derived>
struct min_coeff_visitor<Derived, PropagateNumbers> : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if((numext::isnan)(this->res) || (!(numext::isnan)(value) && value < this->res))
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template <typename Derived>
struct min_coeff_visitor<Derived, PropagateNaN> : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if((numext::isnan)(value) || value < this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template<typename Scalar, int NaNPropagation>
struct functor_traits<min_coeff_visitor<Scalar, NaNPropagation> > {
enum {
Cost = NumTraits<Scalar>::AddCost
};
};
/** \internal
* \brief Visitor computing the max coefficient with its value and coordinates
*
* \sa DenseBase::maxCoeff(Index*, Index*)
*/
template <typename Derived, int NaNPropagation>
struct max_coeff_visitor : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if(value > this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template <typename Derived>
struct max_coeff_visitor<Derived, PropagateNumbers> : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if((numext::isnan)(this->res) || (!(numext::isnan)(value) && value > this->res))
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template <typename Derived>
struct max_coeff_visitor<Derived, PropagateNaN> : coeff_visitor<Derived>
{
typedef typename Derived::Scalar Scalar;
EIGEN_DEVICE_FUNC
void operator() (const Scalar& value, Index i, Index j)
{
if((numext::isnan)(value) || value > this->res)
{
this->res = value;
this->row = i;
this->col = j;
}
}
};
template<typename Scalar, int NaNPropagation>
struct functor_traits<max_coeff_visitor<Scalar, NaNPropagation> > {
enum {
Cost = NumTraits<Scalar>::AddCost
};
};
} // end namespace internal
/** \fn DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
* \returns the minimum of all coefficients of *this and puts in *row and *col its location.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visit(), DenseBase::minCoeff()
*/
template<typename Derived>
template<int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
{
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
internal::min_coeff_visitor<Derived, NaNPropagation> minVisitor;
this->visit(minVisitor);
*rowId = minVisitor.row;
if (colId) *colId = minVisitor.col;
return minVisitor.res;
}
/** \returns the minimum of all coefficients of *this and puts in *index its location.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::minCoeff()
*/
template<typename Derived>
template<int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff(IndexType* index) const
{
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::min_coeff_visitor<Derived, NaNPropagation> minVisitor;
this->visit(minVisitor);
*index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row);
return minVisitor.res;
}
/** \fn DenseBase<Derived>::maxCoeff(IndexType* rowId, IndexType* colId) const
* \returns the maximum of all coefficients of *this and puts in *row and *col its location.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::maxCoeff()
*/
template<typename Derived>
template<int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const
{
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
internal::max_coeff_visitor<Derived, NaNPropagation> maxVisitor;
this->visit(maxVisitor);
*rowPtr = maxVisitor.row;
if (colPtr) *colPtr = maxVisitor.col;
return maxVisitor.res;
}
/** \returns the maximum of all coefficients of *this and puts in *index its location.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff()
*/
template<typename Derived>
template<int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff(IndexType* index) const
{
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::max_coeff_visitor<Derived, NaNPropagation> maxVisitor;
this->visit(maxVisitor);
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
return maxVisitor.res;
}
} // end namespace Eigen
#endif // EIGEN_VISITOR_H