| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // Copyright (C) 2021 C. Antonio Sanchez <cantonios@google.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPLEX_CUDA_H |
| #define EIGEN_COMPLEX_CUDA_H |
| |
| // clang-format off |
| // Many std::complex methods such as operator+, operator-, operator* and |
| // operator/ are not constexpr. Due to this, GCC and older versions of clang do |
| // not treat them as device functions and thus Eigen functors making use of |
| // these operators fail to compile. Here, we manually specialize these |
| // operators and functors for complex types when building for CUDA to enable |
| // their use on-device. |
| |
| #if defined(EIGEN_CUDACC) && defined(EIGEN_GPU_COMPILE_PHASE) |
| |
| // ICC already specializes std::complex<float> and std::complex<double> |
| // operators, preventing us from making them device functions here. |
| // This will lead to silent runtime errors if the operators are used on device. |
| // |
| // To allow std::complex operator use on device, define _OVERRIDE_COMPLEX_SPECIALIZATION_ |
| // prior to first inclusion of <complex>. This prevents ICC from adding |
| // its own specializations, so our custom ones below can be used instead. |
| #if !(defined(EIGEN_COMP_ICC) && defined(_USE_COMPLEX_SPECIALIZATION_)) |
| |
| // Import Eigen's internal operator specializations. |
| #define EIGEN_USING_STD_COMPLEX_OPERATORS \ |
| using Eigen::complex_operator_detail::operator+; \ |
| using Eigen::complex_operator_detail::operator-; \ |
| using Eigen::complex_operator_detail::operator*; \ |
| using Eigen::complex_operator_detail::operator/; \ |
| using Eigen::complex_operator_detail::operator+=; \ |
| using Eigen::complex_operator_detail::operator-=; \ |
| using Eigen::complex_operator_detail::operator*=; \ |
| using Eigen::complex_operator_detail::operator/=; \ |
| using Eigen::complex_operator_detail::operator==; \ |
| using Eigen::complex_operator_detail::operator!=; |
| |
| namespace Eigen { |
| |
| // Specialized std::complex overloads. |
| namespace complex_operator_detail { |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| std::complex<T> complex_multiply(const std::complex<T>& a, const std::complex<T>& b) { |
| const T a_real = numext::real(a); |
| const T a_imag = numext::imag(a); |
| const T b_real = numext::real(b); |
| const T b_imag = numext::imag(b); |
| return std::complex<T>( |
| a_real * b_real - a_imag * b_imag, |
| a_imag * b_real + a_real * b_imag); |
| } |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| std::complex<T> complex_divide_fast(const std::complex<T>& a, const std::complex<T>& b) { |
| const T a_real = numext::real(a); |
| const T a_imag = numext::imag(a); |
| const T b_real = numext::real(b); |
| const T b_imag = numext::imag(b); |
| const T norm = (b_real * b_real + b_imag * b_imag); |
| return std::complex<T>((a_real * b_real + a_imag * b_imag) / norm, |
| (a_imag * b_real - a_real * b_imag) / norm); |
| } |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| std::complex<T> complex_divide_stable(const std::complex<T>& a, const std::complex<T>& b) { |
| const T a_real = numext::real(a); |
| const T a_imag = numext::imag(a); |
| const T b_real = numext::real(b); |
| const T b_imag = numext::imag(b); |
| // Smith's complex division (https://arxiv.org/pdf/1210.4539.pdf), |
| // guards against over/under-flow. |
| const bool scale_imag = numext::abs(b_imag) <= numext::abs(b_real); |
| const T rscale = scale_imag ? T(1) : b_real / b_imag; |
| const T iscale = scale_imag ? b_imag / b_real : T(1); |
| const T denominator = b_real * rscale + b_imag * iscale; |
| return std::complex<T>((a_real * rscale + a_imag * iscale) / denominator, |
| (a_imag * rscale - a_real * iscale) / denominator); |
| } |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| std::complex<T> complex_divide(const std::complex<T>& a, const std::complex<T>& b) { |
| #if EIGEN_FAST_MATH |
| return complex_divide_fast(a, b); |
| #else |
| return complex_divide_stable(a, b); |
| #endif |
| } |
| |
| // NOTE: We cannot specialize compound assignment operators with Scalar T, |
| // (i.e. operator@=(const T&), for @=+,-,*,/) |
| // since they are already specialized for float/double/long double within |
| // the standard <complex> header. We also do not specialize the stream |
| // operators. |
| #define EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(T) \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator+(const std::complex<T>& a) { return a; } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator-(const std::complex<T>& a) { \ |
| return std::complex<T>(-numext::real(a), -numext::imag(a)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator+(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return std::complex<T>(numext::real(a) + numext::real(b), numext::imag(a) + numext::imag(b)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator+(const std::complex<T>& a, const T& b) { \ |
| return std::complex<T>(numext::real(a) + b, numext::imag(a)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator+(const T& a, const std::complex<T>& b) { \ |
| return std::complex<T>(a + numext::real(b), numext::imag(b)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator-(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return std::complex<T>(numext::real(a) - numext::real(b), numext::imag(a) - numext::imag(b)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator-(const std::complex<T>& a, const T& b) { \ |
| return std::complex<T>(numext::real(a) - b, numext::imag(a)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator-(const T& a, const std::complex<T>& b) { \ |
| return std::complex<T>(a - numext::real(b), -numext::imag(b)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator*(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return complex_multiply(a, b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator*(const std::complex<T>& a, const T& b) { \ |
| return std::complex<T>(numext::real(a) * b, numext::imag(a) * b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator*(const T& a, const std::complex<T>& b) { \ |
| return std::complex<T>(a * numext::real(b), a * numext::imag(b)); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator/(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return complex_divide(a, b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator/(const std::complex<T>& a, const T& b) { \ |
| return std::complex<T>(numext::real(a) / b, numext::imag(a) / b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T> operator/(const T& a, const std::complex<T>& b) { \ |
| return complex_divide(std::complex<T>(a, 0), b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T>& operator+=(std::complex<T>& a, const std::complex<T>& b) { \ |
| numext::real_ref(a) += numext::real(b); \ |
| numext::imag_ref(a) += numext::imag(b); \ |
| return a; \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T>& operator-=(std::complex<T>& a, const std::complex<T>& b) { \ |
| numext::real_ref(a) -= numext::real(b); \ |
| numext::imag_ref(a) -= numext::imag(b); \ |
| return a; \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T>& operator*=(std::complex<T>& a, const std::complex<T>& b) { \ |
| a = complex_multiply(a, b); \ |
| return a; \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| std::complex<T>& operator/=(std::complex<T>& a, const std::complex<T>& b) { \ |
| a = complex_divide(a, b); \ |
| return a; \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator==(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return numext::real(a) == numext::real(b) && numext::imag(a) == numext::imag(b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator==(const std::complex<T>& a, const T& b) { \ |
| return numext::real(a) == b && numext::imag(a) == 0; \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator==(const T& a, const std::complex<T>& b) { \ |
| return a == numext::real(b) && 0 == numext::imag(b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator!=(const std::complex<T>& a, const std::complex<T>& b) { \ |
| return !(a == b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator!=(const std::complex<T>& a, const T& b) { \ |
| return !(a == b); \ |
| } \ |
| \ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ |
| bool operator!=(const T& a, const std::complex<T>& b) { \ |
| return !(a == b); \ |
| } |
| |
| // Do not specialize for long double, since that reduces to double on device. |
| EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(float) |
| EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS(double) |
| |
| #undef EIGEN_CREATE_STD_COMPLEX_OPERATOR_SPECIALIZATIONS |
| |
| |
| } // namespace complex_operator_detail |
| |
| EIGEN_USING_STD_COMPLEX_OPERATORS |
| |
| namespace numext { |
| EIGEN_USING_STD_COMPLEX_OPERATORS |
| } // namespace numext |
| |
| namespace internal { |
| EIGEN_USING_STD_COMPLEX_OPERATORS |
| |
| } // namespace internal |
| } // namespace Eigen |
| |
| #endif // !(EIGEN_COMP_ICC && _USE_COMPLEX_SPECIALIZATION_) |
| |
| #endif // EIGEN_CUDACC && EIGEN_GPU_COMPILE_PHASE |
| |
| #endif // EIGEN_COMPLEX_CUDA_H |