| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #ifndef EIGEN_INTEGRAL_CONSTANT_H |
| #define EIGEN_INTEGRAL_CONSTANT_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<int N> class FixedInt; |
| template<int N> class VariableAndFixedInt; |
| |
| /** \internal |
| * \class FixedInt |
| * |
| * This class embeds a compile-time integer \c N. |
| * |
| * It is similar to c++11 std::integral_constant<int,N> but with some additional features |
| * such as: |
| * - implicit conversion to int |
| * - arithmetic and some bitwise operators: -, +, *, /, %, &, | |
| * - c++98/14 compatibility with fix<N> and fix<N>() syntax to define integral constants. |
| * |
| * It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to |
| * be created by the user using Eigen::fix<N> or Eigen::fix<N>(). In C++98-11, the former syntax does |
| * not create a FixedInt<N> instance but rather a point to function that needs to be \em cleaned-up |
| * using the generic helper: |
| * \code |
| * internal::cleanup_index_type<T>::type |
| * internal::cleanup_index_type<T,DynamicKey>::type |
| * \endcode |
| * where T can a FixedInt<N>, a pointer to function FixedInt<N> (*)(), or numerous other integer-like representations. |
| * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. |
| * |
| * For convenience, you can extract the compile-time value \c N in a generic way using the following helper: |
| * \code |
| * internal::get_fixed_value<T,DefaultVal>::value |
| * \endcode |
| * that will give you \c N if T equals FixedInt<N> or FixedInt<N> (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). |
| * |
| * \sa fix<N>, class VariableAndFixedInt |
| */ |
| template<int N> class FixedInt |
| { |
| public: |
| static const int value = N; |
| EIGEN_CONSTEXPR operator int() const { return value; } |
| FixedInt() {} |
| FixedInt( VariableAndFixedInt<N> other) { |
| #ifndef EIGEN_INTERNAL_DEBUGGING |
| EIGEN_UNUSED_VARIABLE(other); |
| #endif |
| eigen_internal_assert(int(other)==N); |
| } |
| |
| FixedInt<-N> operator-() const { return FixedInt<-N>(); } |
| template<int M> |
| FixedInt<N+M> operator+( FixedInt<M>) const { return FixedInt<N+M>(); } |
| template<int M> |
| FixedInt<N-M> operator-( FixedInt<M>) const { return FixedInt<N-M>(); } |
| template<int M> |
| FixedInt<N*M> operator*( FixedInt<M>) const { return FixedInt<N*M>(); } |
| template<int M> |
| FixedInt<N/M> operator/( FixedInt<M>) const { return FixedInt<N/M>(); } |
| template<int M> |
| FixedInt<N%M> operator%( FixedInt<M>) const { return FixedInt<N%M>(); } |
| template<int M> |
| FixedInt<N|M> operator|( FixedInt<M>) const { return FixedInt<N|M>(); } |
| template<int M> |
| FixedInt<N&M> operator&( FixedInt<M>) const { return FixedInt<N&M>(); } |
| |
| #if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES |
| // Needed in C++14 to allow fix<N>(): |
| FixedInt operator() () const { return *this; } |
| |
| VariableAndFixedInt<N> operator() (int val) const { return VariableAndFixedInt<N>(val); } |
| #else |
| FixedInt ( FixedInt<N> (*)() ) {} |
| #endif |
| |
| #if EIGEN_HAS_CXX11 |
| FixedInt(std::integral_constant<int,N>) {} |
| #endif |
| }; |
| |
| /** \internal |
| * \class VariableAndFixedInt |
| * |
| * This class embeds both a compile-time integer \c N and a runtime integer. |
| * Both values are supposed to be equal unless the compile-time value \c N has a special |
| * value meaning that the runtime-value should be used. Depending on the context, this special |
| * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for |
| * quantities that can be negative). |
| * |
| * It is the return-type of the function Eigen::fix<N>(int), and most of the time this is the only |
| * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt. |
| * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert |
| * it to either a true compile-time quantity (i.e. a FixedInt<N>), or to a runtime quantity (e.g., an Index) |
| * using the following generic helper: |
| * \code |
| * internal::cleanup_index_type<T>::type |
| * internal::cleanup_index_type<T,DynamicKey>::type |
| * \endcode |
| * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations. |
| * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values. |
| * |
| * For convenience, you can also extract the compile-time value \c N using the following helper: |
| * \code |
| * internal::get_fixed_value<T,DefaultVal>::value |
| * \endcode |
| * that will give you \c N if T equals VariableAndFixedInt<N>, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int). |
| * |
| * \sa fix<N>(int), class FixedInt |
| */ |
| template<int N> class VariableAndFixedInt |
| { |
| public: |
| static const int value = N; |
| operator int() const { return m_value; } |
| VariableAndFixedInt(int val) { m_value = val; } |
| protected: |
| int m_value; |
| }; |
| |
| template<typename T, int Default=Dynamic> struct get_fixed_value { |
| static const int value = Default; |
| }; |
| |
| template<int N,int Default> struct get_fixed_value<FixedInt<N>,Default> { |
| static const int value = N; |
| }; |
| |
| #if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES |
| template<int N,int Default> struct get_fixed_value<FixedInt<N> (*)(),Default> { |
| static const int value = N; |
| }; |
| #endif |
| |
| template<int N,int Default> struct get_fixed_value<VariableAndFixedInt<N>,Default> { |
| static const int value = N ; |
| }; |
| |
| template<typename T, int N, int Default> |
| struct get_fixed_value<variable_if_dynamic<T,N>,Default> { |
| static const int value = N; |
| }; |
| |
| template<typename T> EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; } |
| #if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES |
| template<int N> EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt<N> (*)()) { return N; } |
| #endif |
| |
| // Cleanup integer/FixedInt/VariableAndFixedInt/etc types: |
| |
| // By default, no cleanup: |
| template<typename T, int DynamicKey=Dynamic, typename EnableIf=void> struct cleanup_index_type { typedef T type; }; |
| |
| // Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index |
| template<typename T, int DynamicKey> struct cleanup_index_type<T,DynamicKey,typename internal::enable_if<internal::is_integral<T>::value>::type> { typedef Index type; }; |
| |
| #if !EIGEN_HAS_CXX14_VARIABLE_TEMPLATES |
| // In c++98/c++11, fix<N> is a pointer to function that we better cleanup to a true FixedInt<N>: |
| template<int N, int DynamicKey> struct cleanup_index_type<FixedInt<N> (*)(), DynamicKey> { typedef FixedInt<N> type; }; |
| #endif |
| |
| // If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value: |
| template<int N, int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<N>, DynamicKey> { typedef FixedInt<N> type; }; |
| // If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index): |
| template<int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<DynamicKey>, DynamicKey> { typedef Index type; }; |
| |
| #if EIGEN_HAS_CXX11 |
| template<int N, int DynamicKey> struct cleanup_index_type<std::integral_constant<int,N>, DynamicKey> { typedef FixedInt<N> type; }; |
| #endif |
| |
| } // end namespace internal |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| |
| #if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES |
| template<int N> |
| static const internal::FixedInt<N> fix{}; |
| #else |
| template<int N> |
| inline internal::FixedInt<N> fix() { return internal::FixedInt<N>(); } |
| |
| // The generic typename T is mandatory. Otherwise, a code like fix<N> could refer to either the function above or this next overload. |
| // This way a code like fix<N> can only refer to the previous function. |
| template<int N,typename T> |
| inline internal::VariableAndFixedInt<N> fix(T val) { return internal::VariableAndFixedInt<N>(internal::convert_index<int>(val)); } |
| #endif |
| |
| #else // EIGEN_PARSED_BY_DOXYGEN |
| |
| /** \var fix<N>() |
| * \ingroup Core_Module |
| * |
| * This \em identifier permits to construct an object embedding a compile-time integer \c N. |
| * |
| * \tparam N the compile-time integer value |
| * |
| * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them: |
| * \code |
| * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1] |
| * \endcode |
| * |
| * See also the function fix(int) to pass both a compile-time and runtime value. |
| * |
| * In c++14, it is implemented as: |
| * \code |
| * template<int N> static const internal::FixedInt<N> fix{}; |
| * \endcode |
| * where internal::FixedInt<N> is an internal template class similar to |
| * <a href="http://en.cppreference.com/w/cpp/types/integral_constant">\c std::integral_constant </a><tt> <int,N> </tt> |
| * Here, \c fix<N> is thus an object of type \c internal::FixedInt<N>. |
| * |
| * In c++98/11, it is implemented as a function: |
| * \code |
| * template<int N> inline internal::FixedInt<N> fix(); |
| * \endcode |
| * Here internal::FixedInt<N> is thus a pointer to function. |
| * |
| * If for some reason you want a true object in c++98 then you can write: \code fix<N>() \endcode which is also valid in c++14. |
| * |
| * \sa fix<N>(int), seq, seqN |
| */ |
| template<int N> |
| static const auto fix(); |
| |
| /** \fn fix<N>(int) |
| * \ingroup Core_Module |
| * |
| * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val. |
| * |
| * \tparam N the compile-time integer value |
| * \param val the fallback runtime integer value |
| * |
| * This function is a more general version of the \ref fix identifier/function that can be used in template code |
| * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers |
| * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers |
| * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val |
| * will be used as a fallback. |
| * |
| * A typical use case would be: |
| * \code |
| * template<typename Derived> void foo(const MatrixBase<Derived> &mat) { |
| * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2; |
| * const int n = mat.rows()/2; |
| * ... mat( seqN(0,fix<N>(n) ) ...; |
| * } |
| * \endcode |
| * In this example, the function Eigen::seqN knows that the second argument is expected to be a size. |
| * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n. |
| * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>. |
| * |
| * \sa fix, seqN, class ArithmeticSequence |
| */ |
| template<int N> |
| static const auto fix(int val); |
| |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_INTEGRAL_CONSTANT_H |