| /* |
| Copyright (c) 2011, Intel Corporation. All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright notice, this |
| list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| * Neither the name of Intel Corporation nor the names of its contributors may |
| be used to endorse or promote products derived from this software without |
| specific prior written permission. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR |
| ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| ******************************************************************************** |
| * Content : Eigen bindings to LAPACKe |
| * Self-adjoint eigenvalues/eigenvectors. |
| ******************************************************************************** |
| */ |
| |
| #ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H |
| #define EIGEN_SAEIGENSOLVER_LAPACKE_H |
| |
| namespace Eigen { |
| |
| /** \internal Specialization for the data types supported by LAPACKe */ |
| |
| #define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ |
| template<> template<typename InputType> inline \ |
| SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \ |
| SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \ |
| { \ |
| eigen_assert(matrix.cols() == matrix.rows()); \ |
| eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ |
| && (options&EigVecMask)!=EigVecMask \ |
| && "invalid option parameter"); \ |
| bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ |
| lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, info; \ |
| m_eivalues.resize(n,1); \ |
| m_subdiag.resize(n-1); \ |
| m_eivec = matrix; \ |
| \ |
| if(n==1) \ |
| { \ |
| m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ |
| if(computeEigenvectors) m_eivec.setOnes(n,n); \ |
| m_info = Success; \ |
| m_isInitialized = true; \ |
| m_eigenvectorsOk = computeEigenvectors; \ |
| return *this; \ |
| } \ |
| \ |
| lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \ |
| char jobz, uplo='L'/*, range='A'*/; \ |
| jobz = computeEigenvectors ? 'V' : 'N'; \ |
| \ |
| info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ |
| m_info = (info==0) ? Success : NoConvergence; \ |
| m_isInitialized = true; \ |
| m_eigenvectorsOk = computeEigenvectors; \ |
| return *this; \ |
| } |
| |
| #define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \ |
| EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \ |
| EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor ) |
| |
| EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev) |
| EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev) |
| EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) |
| EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev) |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SAEIGENSOLVER_H |