| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSEASSIGN_H |
| #define EIGEN_SPARSEASSIGN_H |
| |
| namespace Eigen { |
| |
| template<typename Derived> |
| template<typename OtherDerived> |
| Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other) |
| { |
| internal::call_assignment_no_alias(derived(), other.derived()); |
| return derived(); |
| } |
| |
| template<typename Derived> |
| template<typename OtherDerived> |
| Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other) |
| { |
| // TODO use the evaluator mechanism |
| other.evalTo(derived()); |
| return derived(); |
| } |
| |
| template<typename Derived> |
| template<typename OtherDerived> |
| inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other) |
| { |
| // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine |
| internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> > |
| ::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>()); |
| return derived(); |
| } |
| |
| template<typename Derived> |
| inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other) |
| { |
| internal::call_assignment_no_alias(derived(), other.derived()); |
| return derived(); |
| } |
| |
| namespace internal { |
| |
| template<> |
| struct storage_kind_to_evaluator_kind<Sparse> { |
| typedef IteratorBased Kind; |
| }; |
| |
| template<> |
| struct storage_kind_to_shape<Sparse> { |
| typedef SparseShape Shape; |
| }; |
| |
| struct Sparse2Sparse {}; |
| struct Sparse2Dense {}; |
| |
| template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; }; |
| template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; }; |
| template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; }; |
| template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; }; |
| |
| |
| template<typename DstXprType, typename SrcXprType> |
| void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| typedef internal::evaluator<DstXprType> DstEvaluatorType; |
| typedef internal::evaluator<SrcXprType> SrcEvaluatorType; |
| |
| SrcEvaluatorType srcEvaluator(src); |
| |
| const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); |
| const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); |
| if ((!transpose) && src.isRValue()) |
| { |
| // eval without temporary |
| dst.resize(src.rows(), src.cols()); |
| dst.setZero(); |
| dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); |
| for (Index j=0; j<outerEvaluationSize; ++j) |
| { |
| dst.startVec(j); |
| for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) |
| { |
| Scalar v = it.value(); |
| dst.insertBackByOuterInner(j,it.index()) = v; |
| } |
| } |
| dst.finalize(); |
| } |
| else |
| { |
| // eval through a temporary |
| eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || |
| (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && |
| "the transpose operation is supposed to be handled in SparseMatrix::operator="); |
| |
| enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; |
| |
| |
| DstXprType temp(src.rows(), src.cols()); |
| |
| temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); |
| for (Index j=0; j<outerEvaluationSize; ++j) |
| { |
| temp.startVec(j); |
| for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it) |
| { |
| Scalar v = it.value(); |
| temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v; |
| } |
| } |
| temp.finalize(); |
| |
| dst = temp.markAsRValue(); |
| } |
| } |
| |
| // Generic Sparse to Sparse assignment |
| template< typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse> |
| { |
| static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) |
| { |
| assign_sparse_to_sparse(dst.derived(), src.derived()); |
| } |
| }; |
| |
| // Generic Sparse to Dense assignment |
| template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak> |
| struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense, Weak> |
| { |
| static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) |
| { |
| if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value) |
| dst.setZero(); |
| |
| internal::evaluator<SrcXprType> srcEval(src); |
| resize_if_allowed(dst, src, func); |
| internal::evaluator<DstXprType> dstEval(dst); |
| |
| const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols(); |
| for (Index j=0; j<outerEvaluationSize; ++j) |
| for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i) |
| func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); |
| } |
| }; |
| |
| // Specialization for dense ?= dense +/- sparse and dense ?= sparse +/- dense |
| template<typename DstXprType, typename Func1, typename Func2> |
| struct assignment_from_dense_op_sparse |
| { |
| template<typename SrcXprType, typename InitialFunc> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/) |
| { |
| #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN |
| EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN |
| #endif |
| |
| call_assignment_no_alias(dst, src.lhs(), Func1()); |
| call_assignment_no_alias(dst, src.rhs(), Func2()); |
| } |
| |
| // Specialization for dense1 = sparse + dense2; -> dense1 = dense2; dense1 += sparse; |
| template<typename Lhs, typename Rhs, typename Scalar> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type |
| run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_sum_op<Scalar,Scalar>, const Lhs, const Rhs> &src, |
| const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) |
| { |
| #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN |
| EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN |
| #endif |
| |
| // Apply the dense matrix first, then the sparse one. |
| call_assignment_no_alias(dst, src.rhs(), Func1()); |
| call_assignment_no_alias(dst, src.lhs(), Func2()); |
| } |
| |
| // Specialization for dense1 = sparse - dense2; -> dense1 = -dense2; dense1 += sparse; |
| template<typename Lhs, typename Rhs, typename Scalar> |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| typename internal::enable_if<internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type |
| run(DstXprType &dst, const CwiseBinaryOp<internal::scalar_difference_op<Scalar,Scalar>, const Lhs, const Rhs> &src, |
| const internal::assign_op<typename DstXprType::Scalar,Scalar>& /*func*/) |
| { |
| #ifdef EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN |
| EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN |
| #endif |
| |
| // Apply the dense matrix first, then the sparse one. |
| call_assignment_no_alias(dst, -src.rhs(), Func1()); |
| call_assignment_no_alias(dst, src.lhs(), add_assign_op<typename DstXprType::Scalar,typename Lhs::Scalar>()); |
| } |
| }; |
| |
| #define EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(ASSIGN_OP,BINOP,ASSIGN_OP2) \ |
| template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> \ |
| struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<Scalar,Scalar>, const Lhs, const Rhs>, internal::ASSIGN_OP<typename DstXprType::Scalar,Scalar>, \ |
| Sparse2Dense, \ |
| typename internal::enable_if< internal::is_same<typename internal::evaluator_traits<Lhs>::Shape,DenseShape>::value \ |
| || internal::is_same<typename internal::evaluator_traits<Rhs>::Shape,DenseShape>::value>::type> \ |
| : assignment_from_dense_op_sparse<DstXprType, internal::ASSIGN_OP<typename DstXprType::Scalar,typename Lhs::Scalar>, internal::ASSIGN_OP2<typename DstXprType::Scalar,typename Rhs::Scalar> > \ |
| {} |
| |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_sum_op,add_assign_op); |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_sum_op,add_assign_op); |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_sum_op,sub_assign_op); |
| |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(assign_op, scalar_difference_op,sub_assign_op); |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(add_assign_op,scalar_difference_op,sub_assign_op); |
| EIGEN_CATCH_ASSIGN_DENSE_OP_SPARSE(sub_assign_op,scalar_difference_op,add_assign_op); |
| |
| |
| // Specialization for "dst = dec.solve(rhs)" |
| // NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error |
| template<typename DstXprType, typename DecType, typename RhsType, typename Scalar> |
| struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse> |
| { |
| typedef Solve<DecType,RhsType> SrcXprType; |
| static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &) |
| { |
| Index dstRows = src.rows(); |
| Index dstCols = src.cols(); |
| if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) |
| dst.resize(dstRows, dstCols); |
| |
| src.dec()._solve_impl(src.rhs(), dst); |
| } |
| }; |
| |
| struct Diagonal2Sparse {}; |
| |
| template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; }; |
| |
| template< typename DstXprType, typename SrcXprType, typename Functor> |
| struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse> |
| { |
| typedef typename DstXprType::StorageIndex StorageIndex; |
| typedef typename DstXprType::Scalar Scalar; |
| |
| template<int Options, typename AssignFunc> |
| static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const AssignFunc &func) |
| { dst.assignDiagonal(src.diagonal(), func); } |
| |
| template<typename DstDerived> |
| static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) |
| { dst.derived().diagonal() = src.diagonal(); } |
| |
| template<typename DstDerived> |
| static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) |
| { dst.derived().diagonal() += src.diagonal(); } |
| |
| template<typename DstDerived> |
| static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/) |
| { dst.derived().diagonal() -= src.diagonal(); } |
| }; |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSEASSIGN_H |