blob: 6a2c7a8ce6354fc70032e57734f12886d9f2d2e0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H
#define EIGEN_SPARSE_COMPRESSED_BASE_H
namespace Eigen {
template<typename Derived> class SparseCompressedBase;
namespace internal {
template<typename Derived>
struct traits<SparseCompressedBase<Derived> > : traits<Derived>
{};
} // end namespace internal
/** \ingroup SparseCore_Module
* \class SparseCompressedBase
* \brief Common base class for sparse [compressed]-{row|column}-storage format.
*
* This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as:
* - SparseMatrix
* - Ref<SparseMatrixType,Options>
* - Map<SparseMatrixType>
*
*/
template<typename Derived>
class SparseCompressedBase
: public SparseMatrixBase<Derived>
{
public:
typedef SparseMatrixBase<Derived> Base;
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase)
using Base::operator=;
using Base::IsRowMajor;
class InnerIterator;
class ReverseInnerIterator;
protected:
typedef typename Base::IndexVector IndexVector;
Eigen::Map<IndexVector> innerNonZeros() { return Eigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
const Eigen::Map<const IndexVector> innerNonZeros() const { return Eigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
public:
/** \returns the number of non zero coefficients */
inline Index nonZeros() const
{
if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0)
return derived().nonZeros();
else if(isCompressed())
return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0];
else if(derived().outerSize()==0)
return 0;
else
return innerNonZeros().sum();
}
/** \returns a const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline const Scalar* valuePtr() const { return derived().valuePtr(); }
/** \returns a non-const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline Scalar* valuePtr() { return derived().valuePtr(); }
/** \returns a const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); }
/** \returns a non-const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
/** \returns a const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 for SparseVector
* \sa valuePtr(), innerIndexPtr() */
inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); }
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 for SparseVector
* \sa valuePtr(), innerIndexPtr() */
inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); }
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); }
/** \returns whether \c *this is in compressed form. */
inline bool isCompressed() const { return innerNonZeroPtr()==0; }
/** \returns a read-only view of the stored coefficients as a 1D array expression.
*
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
*
* \sa valuePtr(), isCompressed() */
const Map<const Array<Scalar,Dynamic,1> > coeffs() const { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
/** \returns a read-write view of the stored coefficients as a 1D array expression
*
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
*
* Here is an example:
* \include SparseMatrix_coeffs.cpp
* and the output is:
* \include SparseMatrix_coeffs.out
*
* \sa valuePtr(), isCompressed() */
Map<Array<Scalar,Dynamic,1> > coeffs() { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
protected:
/** Default constructor. Do nothing. */
SparseCompressedBase() {}
/** \internal return the index of the coeff at (row,col) or just before if it does not exist.
* This is an analogue of std::lower_bound.
*/
internal::LowerBoundIndex lower_bound(Index row, Index col) const
{
eigen_internal_assert(row>=0 && row<this->rows() && col>=0 && col<this->cols());
const Index outer = Derived::IsRowMajor ? row : col;
const Index inner = Derived::IsRowMajor ? col : row;
Index start = this->outerIndexPtr()[outer];
Index end = this->isCompressed() ? this->outerIndexPtr()[outer+1] : this->outerIndexPtr()[outer] + this->innerNonZeroPtr()[outer];
eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist");
internal::LowerBoundIndex p;
p.value = std::lower_bound(this->innerIndexPtr()+start, this->innerIndexPtr()+end,inner) - this->innerIndexPtr();
p.found = (p.value<end) && (this->innerIndexPtr()[p.value]==inner);
return p;
}
friend struct internal::evaluator<SparseCompressedBase<Derived> >;
private:
template<typename OtherDerived> explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&);
};
template<typename Derived>
class SparseCompressedBase<Derived>::InnerIterator
{
public:
InnerIterator()
: m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0)
{}
InnerIterator(const InnerIterator& other)
: m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end)
{}
InnerIterator& operator=(const InnerIterator& other)
{
m_values = other.m_values;
m_indices = other.m_indices;
const_cast<OuterType&>(m_outer).setValue(other.m_outer.value());
m_id = other.m_id;
m_end = other.m_end;
return *this;
}
InnerIterator(const SparseCompressedBase& mat, Index outer)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
{
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
{
m_id = 0;
m_end = mat.nonZeros();
}
else
{
m_id = mat.outerIndexPtr()[outer];
if(mat.isCompressed())
m_end = mat.outerIndexPtr()[outer+1];
else
m_end = m_id + mat.innerNonZeroPtr()[outer];
}
}
explicit InnerIterator(const SparseCompressedBase& mat)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros())
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
explicit InnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size())
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
inline InnerIterator& operator++() { m_id++; return *this; }
inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; }
inline InnerIterator operator+(Index i)
{
InnerIterator result = *this;
result += i;
return result;
}
inline const Scalar& value() const { return m_values[m_id]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
inline StorageIndex index() const { return m_indices[m_id]; }
inline Index outer() const { return m_outer.value(); }
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id < m_end); }
protected:
const Scalar* m_values;
const StorageIndex* m_indices;
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
const OuterType m_outer;
Index m_id;
Index m_end;
private:
// If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template<typename T> InnerIterator(const SparseMatrixBase<T>&, Index outer);
};
template<typename Derived>
class SparseCompressedBase<Derived>::ReverseInnerIterator
{
public:
ReverseInnerIterator(const SparseCompressedBase& mat, Index outer)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
{
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
{
m_start = 0;
m_id = mat.nonZeros();
}
else
{
m_start = mat.outerIndexPtr()[outer];
if(mat.isCompressed())
m_id = mat.outerIndexPtr()[outer+1];
else
m_id = m_start + mat.innerNonZeroPtr()[outer];
}
}
explicit ReverseInnerIterator(const SparseCompressedBase& mat)
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros())
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size())
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
}
inline ReverseInnerIterator& operator--() { --m_id; return *this; }
inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; }
inline ReverseInnerIterator operator-(Index i)
{
ReverseInnerIterator result = *this;
result -= i;
return result;
}
inline const Scalar& value() const { return m_values[m_id-1]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
inline StorageIndex index() const { return m_indices[m_id-1]; }
inline Index outer() const { return m_outer.value(); }
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
inline operator bool() const { return (m_id > m_start); }
protected:
const Scalar* m_values;
const StorageIndex* m_indices;
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
const OuterType m_outer;
Index m_start;
Index m_id;
};
namespace internal {
template<typename Derived>
struct evaluator<SparseCompressedBase<Derived> >
: evaluator_base<Derived>
{
typedef typename Derived::Scalar Scalar;
typedef typename Derived::InnerIterator InnerIterator;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Flags = Derived::Flags
};
evaluator() : m_matrix(0), m_zero(0)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
inline Index nonZerosEstimate() const {
return m_matrix->nonZeros();
}
operator Derived&() { return m_matrix->const_cast_derived(); }
operator const Derived&() const { return *m_matrix; }
typedef typename DenseCoeffsBase<Derived,ReadOnlyAccessors>::CoeffReturnType CoeffReturnType;
const Scalar& coeff(Index row, Index col) const
{
Index p = find(row,col);
if(p==Dynamic)
return m_zero;
else
return m_matrix->const_cast_derived().valuePtr()[p];
}
Scalar& coeffRef(Index row, Index col)
{
Index p = find(row,col);
eigen_assert(p!=Dynamic && "written coefficient does not exist");
return m_matrix->const_cast_derived().valuePtr()[p];
}
protected:
Index find(Index row, Index col) const
{
internal::LowerBoundIndex p = m_matrix->lower_bound(row,col);
return p.found ? p.value : Dynamic;
}
const Derived *m_matrix;
const Scalar m_zero;
};
}
} // end namespace Eigen
#endif // EIGEN_SPARSE_COMPRESSED_BASE_H