blob: 0102e8af3ab7ac2af959853219f47bcd0b39d879 [file] [log] [blame] [edit]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2025 Charlie Schlosser <cs.schlosser@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FIND_COEFF_H
#define EIGEN_FIND_COEFF_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Scalar, int NaNPropagation, bool IsInteger = NumTraits<Scalar>::IsInteger>
struct max_coeff_functor {
EIGEN_DEVICE_FUNC inline bool compareCoeff(const Scalar& incumbent, const Scalar& candidate) const {
return candidate > incumbent;
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) const {
return pcmp_lt(incumbent, candidate);
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_max(a);
}
};
template <typename Scalar>
struct max_coeff_functor<Scalar, PropagateNaN, false> {
EIGEN_DEVICE_FUNC inline Scalar compareCoeff(const Scalar& incumbent, const Scalar& candidate) {
return (candidate > incumbent) || ((candidate != candidate) && (incumbent == incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) {
return pandnot(pcmp_lt_or_nan(incumbent, candidate), pisnan(incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_max<PropagateNaN>(a);
}
};
template <typename Scalar>
struct max_coeff_functor<Scalar, PropagateNumbers, false> {
EIGEN_DEVICE_FUNC inline bool compareCoeff(const Scalar& incumbent, const Scalar& candidate) const {
return (candidate > incumbent) || ((candidate == candidate) && (incumbent != incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) const {
return pandnot(pcmp_lt_or_nan(incumbent, candidate), pisnan(candidate));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_max<PropagateNumbers>(a);
}
};
template <typename Scalar, int NaNPropagation, bool IsInteger = NumTraits<Scalar>::IsInteger>
struct min_coeff_functor {
EIGEN_DEVICE_FUNC inline bool compareCoeff(const Scalar& incumbent, const Scalar& candidate) const {
return candidate < incumbent;
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) const {
return pcmp_lt(candidate, incumbent);
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_min(a);
}
};
template <typename Scalar>
struct min_coeff_functor<Scalar, PropagateNaN, false> {
EIGEN_DEVICE_FUNC inline Scalar compareCoeff(const Scalar& incumbent, const Scalar& candidate) {
return (candidate < incumbent) || ((candidate != candidate) && (incumbent == incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) {
return pandnot(pcmp_lt_or_nan(candidate, incumbent), pisnan(incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_min<PropagateNaN>(a);
}
};
template <typename Scalar>
struct min_coeff_functor<Scalar, PropagateNumbers, false> {
EIGEN_DEVICE_FUNC inline bool compareCoeff(const Scalar& incumbent, const Scalar& candidate) const {
return (candidate < incumbent) || ((candidate == candidate) && (incumbent != incumbent));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet comparePacket(const Packet& incumbent, const Packet& candidate) const {
return pandnot(pcmp_lt_or_nan(candidate, incumbent), pisnan(candidate));
}
template <typename Packet>
EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& a) const {
return predux_min<PropagateNumbers>(a);
}
};
template <typename Scalar>
struct min_max_traits {
static constexpr bool PacketAccess = packet_traits<Scalar>::Vectorizable;
};
template <typename Scalar, int NaNPropagation>
struct functor_traits<max_coeff_functor<Scalar, NaNPropagation>> : min_max_traits<Scalar> {};
template <typename Scalar, int NaNPropagation>
struct functor_traits<min_coeff_functor<Scalar, NaNPropagation>> : min_max_traits<Scalar> {};
template <typename Evaluator, typename Func, bool Linear, bool Vectorize>
struct find_coeff_loop;
template <typename Evaluator, typename Func>
struct find_coeff_loop<Evaluator, Func, /*Linear*/ false, /*Vectorize*/ false> {
using Scalar = typename Evaluator::Scalar;
static EIGEN_DEVICE_FUNC inline void run(const Evaluator& eval, Func& func, Scalar& res, Index& outer, Index& inner) {
Index outerSize = eval.outerSize();
Index innerSize = eval.innerSize();
/* initialization performed in calling function */
/* result = eval.coeff(0, 0); */
/* outer = 0; */
/* inner = 0; */
for (Index j = 0; j < outerSize; j++) {
for (Index i = 0; i < innerSize; i++) {
Scalar xprCoeff = eval.coeffByOuterInner(j, i);
bool newRes = func.compareCoeff(res, xprCoeff);
if (newRes) {
outer = j;
inner = i;
res = xprCoeff;
}
}
}
}
};
template <typename Evaluator, typename Func>
struct find_coeff_loop<Evaluator, Func, /*Linear*/ true, /*Vectorize*/ false> {
using Scalar = typename Evaluator::Scalar;
static EIGEN_DEVICE_FUNC inline void run(const Evaluator& eval, Func& func, Scalar& res, Index& index) {
Index size = eval.size();
/* initialization performed in calling function */
/* result = eval.coeff(0); */
/* index = 0; */
for (Index k = 0; k < size; k++) {
Scalar xprCoeff = eval.coeff(k);
bool newRes = func.compareCoeff(res, xprCoeff);
if (newRes) {
index = k;
res = xprCoeff;
}
}
}
};
template <typename Evaluator, typename Func>
struct find_coeff_loop<Evaluator, Func, /*Linear*/ false, /*Vectorize*/ true> {
using ScalarImpl = find_coeff_loop<Evaluator, Func, false, false>;
using Scalar = typename Evaluator::Scalar;
using Packet = typename Evaluator::Packet;
static constexpr int PacketSize = unpacket_traits<Packet>::size;
static EIGEN_DEVICE_FUNC inline void run(const Evaluator& eval, Func& func, Scalar& result, Index& outer,
Index& inner) {
Index outerSize = eval.outerSize();
Index innerSize = eval.innerSize();
Index packetEnd = numext::round_down(innerSize, PacketSize);
/* initialization performed in calling function */
/* result = eval.coeff(0, 0); */
/* outer = 0; */
/* inner = 0; */
bool checkPacket = false;
for (Index j = 0; j < outerSize; j++) {
Packet resultPacket = pset1<Packet>(result);
for (Index i = 0; i < packetEnd; i += PacketSize) {
Packet xprPacket = eval.template packetByOuterInner<Unaligned, Packet>(j, i);
if (predux_any(func.comparePacket(resultPacket, xprPacket))) {
outer = j;
inner = i;
result = func.predux(xprPacket);
resultPacket = pset1<Packet>(result);
checkPacket = true;
}
}
for (Index i = packetEnd; i < innerSize; i++) {
Scalar xprCoeff = eval.coeffByOuterInner(j, i);
if (func.compareCoeff(result, xprCoeff)) {
outer = j;
inner = i;
result = xprCoeff;
checkPacket = false;
}
}
}
if (checkPacket) {
result = eval.coeffByOuterInner(outer, inner);
Index i_end = inner + PacketSize;
for (Index i = inner; i < i_end; i++) {
Scalar xprCoeff = eval.coeffByOuterInner(outer, i);
if (func.compareCoeff(result, xprCoeff)) {
inner = i;
result = xprCoeff;
}
}
}
}
};
template <typename Evaluator, typename Func>
struct find_coeff_loop<Evaluator, Func, /*Linear*/ true, /*Vectorize*/ true> {
using ScalarImpl = find_coeff_loop<Evaluator, Func, true, false>;
using Scalar = typename Evaluator::Scalar;
using Packet = typename Evaluator::Packet;
static constexpr int PacketSize = unpacket_traits<Packet>::size;
static constexpr int Alignment = Evaluator::Alignment;
static EIGEN_DEVICE_FUNC inline void run(const Evaluator& eval, Func& func, Scalar& result, Index& index) {
Index size = eval.size();
Index packetEnd = numext::round_down(size, PacketSize);
/* initialization performed in calling function */
/* result = eval.coeff(0); */
/* index = 0; */
Packet resultPacket = pset1<Packet>(result);
bool checkPacket = false;
for (Index k = 0; k < packetEnd; k += PacketSize) {
Packet xprPacket = eval.template packet<Alignment, Packet>(k);
if (predux_any(func.comparePacket(resultPacket, xprPacket))) {
index = k;
result = func.predux(xprPacket);
resultPacket = pset1<Packet>(result);
checkPacket = true;
}
}
for (Index k = packetEnd; k < size; k++) {
Scalar xprCoeff = eval.coeff(k);
if (func.compareCoeff(result, xprCoeff)) {
index = k;
result = xprCoeff;
checkPacket = false;
}
}
if (checkPacket) {
result = eval.coeff(index);
Index k_end = index + PacketSize;
for (Index k = index; k < k_end; k++) {
Scalar xprCoeff = eval.coeff(k);
if (func.compareCoeff(result, xprCoeff)) {
index = k;
result = xprCoeff;
}
}
}
}
};
template <typename Derived>
struct find_coeff_evaluator : public evaluator<Derived> {
using Base = evaluator<Derived>;
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr int Flags = Base::Flags;
static constexpr bool IsRowMajor = bool(Flags & RowMajorBit);
EIGEN_DEVICE_FUNC inline find_coeff_evaluator(const Derived& xpr) : Base(xpr), m_xpr(xpr) {}
EIGEN_DEVICE_FUNC inline Scalar coeffByOuterInner(Index outer, Index inner) const {
Index row = IsRowMajor ? outer : inner;
Index col = IsRowMajor ? inner : outer;
return Base::coeff(row, col);
}
template <int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC inline PacketType packetByOuterInner(Index outer, Index inner) const {
Index row = IsRowMajor ? outer : inner;
Index col = IsRowMajor ? inner : outer;
return Base::template packet<LoadMode, PacketType>(row, col);
}
EIGEN_DEVICE_FUNC inline Index innerSize() const { return m_xpr.innerSize(); }
EIGEN_DEVICE_FUNC inline Index outerSize() const { return m_xpr.outerSize(); }
EIGEN_DEVICE_FUNC inline Index size() const { return m_xpr.size(); }
const Derived& m_xpr;
};
template <typename Derived, typename Func>
struct find_coeff_impl {
using Evaluator = find_coeff_evaluator<Derived>;
static constexpr int Flags = Evaluator::Flags;
static constexpr int Alignment = Evaluator::Alignment;
static constexpr bool IsRowMajor = Derived::IsRowMajor;
static constexpr int MaxInnerSizeAtCompileTime =
IsRowMajor ? Derived::MaxColsAtCompileTime : Derived::MaxRowsAtCompileTime;
static constexpr int MaxSizeAtCompileTime = Derived::MaxSizeAtCompileTime;
using Scalar = typename Derived::Scalar;
using Packet = typename Evaluator::Packet;
static constexpr int PacketSize = unpacket_traits<Packet>::size;
static constexpr bool Linearize = bool(Flags & LinearAccessBit);
static constexpr bool DontVectorize =
enum_lt_not_dynamic(Linearize ? MaxSizeAtCompileTime : MaxInnerSizeAtCompileTime, PacketSize);
static constexpr bool Vectorize =
!DontVectorize && bool(Flags & PacketAccessBit) && functor_traits<Func>::PacketAccess;
using Loop = find_coeff_loop<Evaluator, Func, Linearize, Vectorize>;
template <bool ForwardLinearAccess = Linearize, std::enable_if_t<!ForwardLinearAccess, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& xpr, Func& func, Scalar& res, Index& outer,
Index& inner) {
Evaluator eval(xpr);
Loop::run(eval, func, res, outer, inner);
}
template <bool ForwardLinearAccess = Linearize, std::enable_if_t<ForwardLinearAccess, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& xpr, Func& func, Scalar& res, Index& outer,
Index& inner) {
// where possible, use the linear loop and back-calculate the outer and inner indices
Index index = 0;
run(xpr, func, res, index);
outer = index / xpr.innerSize();
inner = index % xpr.innerSize();
}
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& xpr, Func& func, Scalar& res, Index& index) {
Evaluator eval(xpr);
Loop::run(eval, func, res, index);
}
};
template <typename Derived, typename IndexType, typename Func>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar findCoeff(const DenseBase<Derived>& mat, Func& func,
IndexType* rowPtr, IndexType* colPtr) {
eigen_assert(mat.rows() > 0 && mat.cols() > 0 && "you are using an empty matrix");
using Scalar = typename DenseBase<Derived>::Scalar;
using FindCoeffImpl = internal::find_coeff_impl<Derived, Func>;
Index outer = 0;
Index inner = 0;
Scalar res = mat.coeff(0, 0);
FindCoeffImpl::run(mat.derived(), func, res, outer, inner);
*rowPtr = internal::convert_index<IndexType>(Derived::IsRowMajor ? outer : inner);
if (colPtr) *colPtr = internal::convert_index<IndexType>(Derived::IsRowMajor ? inner : outer);
return res;
}
template <typename Derived, typename IndexType, typename Func>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar findCoeff(const DenseBase<Derived>& mat, Func& func,
IndexType* indexPtr) {
eigen_assert(mat.size() > 0 && "you are using an empty matrix");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
using Scalar = typename DenseBase<Derived>::Scalar;
using FindCoeffImpl = internal::find_coeff_impl<Derived, Func>;
Index index = 0;
Scalar res = mat.coeff(0);
FindCoeffImpl::run(mat.derived(), func, res, index);
*indexPtr = internal::convert_index<IndexType>(index);
return res;
}
} // namespace internal
/** \fn DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
* \returns the minimum of all coefficients of *this and puts in *row and *col its location.
*
* If there are multiple coefficients with the same extreme value, the location of the first instance is returned.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visit(), DenseBase::minCoeff()
*/
template <typename Derived>
template <int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff(IndexType* rowPtr,
IndexType* colPtr) const {
using Func = internal::min_coeff_functor<Scalar, NaNPropagation>;
Func func;
return internal::findCoeff(derived(), func, rowPtr, colPtr);
}
/** \returns the minimum of all coefficients of *this and puts in *index its location.
*
* If there are multiple coefficients with the same extreme value, the location of the first instance is returned.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visit(),
* DenseBase::minCoeff()
*/
template <typename Derived>
template <int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar DenseBase<Derived>::minCoeff(IndexType* indexPtr) const {
using Func = internal::min_coeff_functor<Scalar, NaNPropagation>;
Func func;
return internal::findCoeff(derived(), func, indexPtr);
}
/** \fn DenseBase<Derived>::maxCoeff(IndexType* rowId, IndexType* colId) const
* \returns the maximum of all coefficients of *this and puts in *row and *col its location.
*
* If there are multiple coefficients with the same extreme value, the location of the first instance is returned.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::maxCoeff()
*/
template <typename Derived>
template <int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff(IndexType* rowPtr,
IndexType* colPtr) const {
using Func = internal::max_coeff_functor<Scalar, NaNPropagation>;
Func func;
return internal::findCoeff(derived(), func, rowPtr, colPtr);
}
/** \returns the maximum of all coefficients of *this and puts in *index its location.
*
* If there are multiple coefficients with the same extreme value, the location of the first instance is returned.
*
* In case \c *this contains NaN, NaNPropagation determines the behavior:
* NaNPropagation == PropagateFast : undefined
* NaNPropagation == PropagateNaN : result is NaN
* NaNPropagation == PropagateNumbers : result is maximum of elements that are not NaN
* \warning the matrix must be not empty, otherwise an assertion is triggered.
*
* \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(),
* DenseBase::maxCoeff()
*/
template <typename Derived>
template <int NaNPropagation, typename IndexType>
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar DenseBase<Derived>::maxCoeff(IndexType* indexPtr) const {
using Func = internal::max_coeff_functor<Scalar, NaNPropagation>;
Func func;
return internal::findCoeff(derived(), func, indexPtr);
}
} // namespace Eigen
#endif // EIGEN_FIND_COEFF_H