| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 The Eigen Authors |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_RUNTIME_NO_MALLOC |
| #include "main.h" |
| |
| #include <Eigen/Eigenvalues> |
| |
| /* this test covers the following files: |
| ComplexQZ.h |
| */ |
| |
| template <typename MatrixType> |
| void generate_random_matrix_pair(const Index dim, MatrixType& A, MatrixType& B) { |
| A.setRandom(dim, dim); |
| B.setRandom(dim, dim); |
| // Zero out each row of B to with a probability of 10%. |
| for (int i = 0; i < dim; i++) { |
| if (internal::random<int>(0, 10) == 0) B.row(i).setZero(); |
| } |
| } |
| |
| template <typename MatrixType> |
| void complex_qz(const MatrixType& A, const MatrixType& B) { |
| using std::abs; |
| const Index dim = A.rows(); |
| ComplexQZ<MatrixType> qz(A, B); |
| VERIFY_IS_EQUAL(qz.info(), Success); |
| auto T = qz.matrixT(), S = qz.matrixS(); |
| bool is_all_zero_T = true, is_all_zero_S = true; |
| using RealScalar = typename MatrixType::RealScalar; |
| RealScalar tol = dim * 10 * NumTraits<RealScalar>::epsilon(); |
| for (Index j = 0; j < dim; j++) { |
| for (Index i = j + 1; i < dim; i++) { |
| if (std::abs(T(i, j)) > tol) { |
| std::cerr << std::abs(T(i, j)) << std::endl; |
| is_all_zero_T = false; |
| } |
| if (std::abs(S(i, j)) > tol) { |
| std::cerr << std::abs(S(i, j)) << std::endl; |
| is_all_zero_S = false; |
| } |
| } |
| } |
| VERIFY_IS_EQUAL(is_all_zero_T, true); |
| VERIFY_IS_EQUAL(is_all_zero_S, true); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim)); |
| VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim)); |
| } |
| |
| EIGEN_DECLARE_TEST(complex_qz) { |
| for (int i = 0; i < g_repeat; i++) { |
| // Check for very small, fixed-sized double- and float complex matrices |
| Eigen::Matrix2cd A_2x2, B_2x2; |
| A_2x2.setRandom(); |
| B_2x2.setRandom(); |
| B_2x2.row(1).setZero(); |
| Eigen::Matrix3cf A_3x3, B_3x3; |
| A_3x3.setRandom(); |
| B_3x3.setRandom(); |
| B_3x3.col(i % 3).setRandom(); |
| CALL_SUBTEST_1(complex_qz(A_2x2, B_2x2)); |
| CALL_SUBTEST_2(complex_qz(A_3x3, B_3x3)); |
| |
| // Test for float complex matrices |
| const Index dim = internal::random<Index>(15, 80); |
| Eigen::MatrixXcf A_float, B_float; |
| generate_random_matrix_pair(dim, A_float, B_float); |
| CALL_SUBTEST_3(complex_qz(A_float, B_float)); |
| |
| // Test for double complex matrices |
| Eigen::MatrixXcd A_double, B_double; |
| generate_random_matrix_pair(dim, A_double, B_double); |
| CALL_SUBTEST_4(complex_qz(A_double, B_double)); |
| } |
| } |