blob: 8bfa321960640904e9b6686ba6825379913e68a9 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "packetmath_test_shared.h"
#include "random_without_cast_overflow.h"
#include "packet_ostream.h"
template <typename T>
inline T REF_ADD(const T& a, const T& b) {
return a + b;
}
template <typename T>
inline T REF_SUB(const T& a, const T& b) {
return a - b;
}
template <typename T>
inline T REF_MUL(const T& a, const T& b) {
return a * b;
}
template <typename T>
inline T REF_MADD(const T& a, const T& b, const T& c) {
return a * b + c;
}
template <typename T>
inline T REF_MSUB(const T& a, const T& b, const T& c) {
return a * b - c;
}
template <typename T>
inline T REF_NMADD(const T& a, const T& b, const T& c) {
return c - a * b;
}
template <typename T>
inline T REF_NMSUB(const T& a, const T& b, const T& c) {
return test::negate(a * b + c);
}
template <typename T>
inline T REF_DIV(const T& a, const T& b) {
return a / b;
}
template <typename T>
inline T REF_RECIPROCAL(const T& a) {
return T(1) / a;
}
template <typename T>
inline T REF_ABS_DIFF(const T& a, const T& b) {
return a > b ? a - b : b - a;
}
// Specializations for bool.
template <>
inline bool REF_ADD(const bool& a, const bool& b) {
return a || b;
}
template <>
inline bool REF_SUB(const bool& a, const bool& b) {
return a ^ b;
}
template <>
inline bool REF_MUL(const bool& a, const bool& b) {
return a && b;
}
template <>
inline bool REF_MADD(const bool& a, const bool& b, const bool& c) {
return (a && b) || c;
}
template <typename T>
inline T REF_FREXP(const T& x, T& exp) {
int iexp = 0;
EIGEN_USING_STD(frexp)
const T out = static_cast<T>(frexp(x, &iexp));
exp = static_cast<T>(iexp);
// The exponent value is unspecified if the input is inf or NaN, but MSVC
// seems to set it to 1. We need to set it back to zero for consistency.
if (!(numext::isfinite)(x)) {
exp = T(0);
}
return out;
}
template <typename T>
inline T REF_LDEXP(const T& x, const T& exp) {
EIGEN_USING_STD(ldexp)
return static_cast<T>(ldexp(x, static_cast<int>(exp)));
}
// Uses pcast to cast from one array to another.
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
struct pcast_array;
template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio>
struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> {
typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
size_t i;
for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) {
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i)));
}
// Leftovers that cannot be loaded into a packet.
for (; i < size; ++i) {
dst[i] = static_cast<TgtScalar>(src[i]);
}
}
};
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 2, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
SrcPacket a = internal::ploadu<SrcPacket>(src + i);
SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b));
}
}
};
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 4, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
SrcPacket a = internal::ploadu<SrcPacket>(src + i);
SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d));
}
}
};
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 8, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
SrcPacket a = internal::ploadu<SrcPacket>(src + i);
SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize);
SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize);
SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize);
SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize);
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h));
}
}
};
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio, bool CanCast = false>
struct test_cast_helper;
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, false> {
static void run() {}
};
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> {
static void run() {
typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
static const int BlockSize = SrcPacketSize * SrcCoeffRatio;
eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched.");
static const int DataSize = 10 * BlockSize;
EIGEN_ALIGN_MAX SrcScalar data1[DataSize];
EIGEN_ALIGN_MAX TgtScalar data2[DataSize];
EIGEN_ALIGN_MAX TgtScalar ref[DataSize];
// Construct a packet of scalars that will not overflow when casting
for (int i = 0; i < DataSize; ++i) {
data1[i] = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value();
}
for (int i = 0; i < DataSize; ++i) {
ref[i] = static_cast<const TgtScalar>(data1[i]);
}
pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2);
VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>");
}
};
template <typename SrcPacket, typename TgtPacket>
struct test_cast {
static void run() {
typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits;
static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio;
static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio;
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
static const bool HasCast =
internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable &&
TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio);
test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run();
}
};
template <typename SrcPacket, typename TgtScalar,
typename TgtPacket = typename internal::packet_traits<TgtScalar>::type,
bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value>
struct test_cast_runner;
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> {
static void run() { test_cast<SrcPacket, TgtPacket>::run(); }
};
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> {
static void run() {
test_cast<SrcPacket, TgtPacket>::run();
test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run();
}
};
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> {
static void run() {}
};
template <typename Scalar, typename Packet, typename EnableIf = void>
struct packetmath_pcast_ops_runner {
static void run() {
test_cast_runner<Packet, float>::run();
test_cast_runner<Packet, double>::run();
test_cast_runner<Packet, int8_t>::run();
test_cast_runner<Packet, uint8_t>::run();
test_cast_runner<Packet, int16_t>::run();
test_cast_runner<Packet, uint16_t>::run();
test_cast_runner<Packet, int32_t>::run();
test_cast_runner<Packet, uint32_t>::run();
test_cast_runner<Packet, int64_t>::run();
test_cast_runner<Packet, uint64_t>::run();
test_cast_runner<Packet, bool>::run();
test_cast_runner<Packet, std::complex<float>>::run();
test_cast_runner<Packet, std::complex<double>>::run();
test_cast_runner<Packet, half>::run();
test_cast_runner<Packet, bfloat16>::run();
}
};
// Only some types support cast from std::complex<>.
template <typename Scalar, typename Packet>
struct packetmath_pcast_ops_runner<Scalar, Packet, std::enable_if_t<NumTraits<Scalar>::IsComplex>> {
static void run() {
test_cast_runner<Packet, std::complex<float>>::run();
test_cast_runner<Packet, std::complex<double>>::run();
test_cast_runner<Packet, half>::run();
test_cast_runner<Packet, bfloat16>::run();
}
};
template <typename Scalar, typename Packet>
void packetmath_boolean_mask_ops() {
using RealScalar = typename NumTraits<Scalar>::Real;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar ref[size];
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>();
}
CHECK_CWISE1(internal::ptrue, internal::ptrue);
CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot);
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(RealScalar(i));
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
// Test (-0) == (0) for signed operations
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(-0.0);
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
// Test NaN
for (int i = 0; i < PacketSize; ++i) {
data1[i] = NumTraits<Scalar>::quiet_NaN();
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq);
}
template <typename Scalar, typename Packet>
void packetmath_boolean_mask_ops_real() {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar ref[size];
for (int i = 0; i < PacketSize; ++i) {
data1[i] = internal::random<Scalar>();
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
// Test (-0) <=/< (0) for signed operations
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(-0.0);
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
// Test NaN
for (int i = 0; i < PacketSize; ++i) {
data1[i] = NumTraits<Scalar>::quiet_NaN();
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan);
}
template <typename Scalar, typename Packet, typename EnableIf = void>
struct packetmath_boolean_mask_ops_notcomplex_test {
static void run() {}
};
template <typename Scalar, typename Packet>
struct packetmath_boolean_mask_ops_notcomplex_test<
Scalar, Packet,
std::enable_if_t<internal::packet_traits<Scalar>::HasCmp && !internal::is_same<Scalar, bool>::value>> {
static void run() {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar ref[size];
for (int i = 0; i < PacketSize; ++i) {
data1[i] = internal::random<Scalar>();
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
// Test (-0) <=/< (0) for signed operations
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(-0.0);
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
// Test NaN
for (int i = 0; i < PacketSize; ++i) {
data1[i] = NumTraits<Scalar>::quiet_NaN();
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le);
CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt);
}
};
template <typename Scalar, typename Packet, typename EnableIf = void>
struct packetmath_minus_zero_add_test {
static void run() {}
};
template <typename Scalar, typename Packet>
struct packetmath_minus_zero_add_test<Scalar, Packet, std::enable_if_t<!NumTraits<Scalar>::IsInteger>> {
static void run() {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size] = {};
EIGEN_ALIGN_MAX Scalar data2[size] = {};
EIGEN_ALIGN_MAX Scalar ref[size] = {};
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(-0.0);
data1[i + PacketSize] = Scalar(-0.0);
}
CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd);
}
};
// Ensure optimization barrier compiles and doesn't modify contents.
// Only applies to raw types, so will not work for std::complex, Eigen::half
// or Eigen::bfloat16. For those you would need to refer to an underlying
// storage element.
template <typename Packet, typename EnableIf = void>
struct eigen_optimization_barrier_test {
static void run() {}
};
template <typename Packet>
struct eigen_optimization_barrier_test<
Packet, std::enable_if_t<!NumTraits<Packet>::IsComplex && !internal::is_same<Packet, Eigen::half>::value &&
!internal::is_same<Packet, Eigen::bfloat16>::value>> {
static void run() {
typedef typename internal::unpacket_traits<Packet>::type Scalar;
Scalar s = internal::random<Scalar>();
Packet barrier = internal::pset1<Packet>(s);
EIGEN_OPTIMIZATION_BARRIER(barrier);
eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER");
}
};
template <typename Scalar, typename Packet, bool HasNegate = internal::packet_traits<Scalar>::HasNegate>
struct negate_test_impl {
static void run_negate(Scalar* data1, Scalar* data2, Scalar* ref, int PacketSize) {
CHECK_CWISE1_IF(HasNegate, test::negate, internal::pnegate);
}
static void run_nmsub(Scalar* data1, Scalar* data2, Scalar* ref, int PacketSize) {
CHECK_CWISE3_IF(HasNegate, REF_NMSUB, internal::pnmsub);
}
};
template <typename Scalar, typename Packet>
struct negate_test_impl<Scalar, Packet, false> {
static void run_negate(Scalar*, Scalar*, Scalar*, int) {}
static void run_nmsub(Scalar*, Scalar*, Scalar*, int) {}
};
template <typename Scalar, typename Packet>
void negate_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) {
negate_test_impl<Scalar, Packet>::run_negate(data1, data2, ref, size);
}
template <typename Scalar, typename Packet>
void nmsub_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) {
negate_test_impl<Scalar, Packet>::run_negate(data1, data2, ref, size);
}
template <typename Scalar, typename Packet>
void packetmath() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
typedef typename NumTraits<Scalar>::Real RealScalar;
if (g_first_pass)
std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '"
<< typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n";
const int max_size = PacketSize > 4 ? PacketSize : 4;
const int size = PacketSize * max_size;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar data3[size];
EIGEN_ALIGN_MAX Scalar ref[size];
RealScalar refvalue = RealScalar(0);
eigen_optimization_barrier_test<Packet>::run();
eigen_optimization_barrier_test<Scalar>::run();
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
data2[i] = internal::random<Scalar>() / RealScalar(PacketSize);
refvalue = (std::max)(refvalue, numext::abs(data1[i]));
}
internal::pstore(data2, internal::pload<Packet>(data1));
VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstore(data2, internal::ploadu<Packet>(data1 + offset));
VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu");
}
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstoreu(data2 + offset, internal::pload<Packet>(data1));
VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu");
}
for (int M = 0; M < PacketSize; ++M) {
for (int N = 0; N <= PacketSize; ++N) {
for (int j = 0; j < size; ++j) {
data1[j] = internal::random<Scalar>() / RealScalar(PacketSize);
data2[j] = internal::random<Scalar>() / RealScalar(PacketSize);
refvalue = (std::max)(refvalue, numext::abs(data1[j]));
}
if (M == 0) {
internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N), N);
VERIFY(test::areApprox(data1, data2, N) && "aligned loadN/storeN");
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstore_partial(data2, internal::ploadu_partial<Packet>(data1 + offset, N), N);
VERIFY(test::areApprox(data1 + offset, data2, N) && "internal::ploadu_partial");
}
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstoreu_partial(data2 + offset, internal::pload_partial<Packet>(data1, N), N);
VERIFY(test::areApprox(data1, data2 + offset, N) && "internal::pstoreu_partial");
}
}
if (N + M > PacketSize) continue; // Don't read or write past end of Packet
internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N, M), N, M);
VERIFY(test::areApprox(data1, data2, N) && "aligned offset loadN/storeN");
}
}
if (internal::unpacket_traits<Packet>::masked_load_available) {
test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset = 0; offset < PacketSize; ++offset) {
for (unsigned long long umask = 0; umask < max_umask; ++umask) {
h.store(data2, h.load(data1 + offset, umask));
for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
}
}
}
if (internal::unpacket_traits<Packet>::masked_store_available) {
test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset = 0; offset < PacketSize; ++offset) {
for (unsigned long long umask = 0; umask < max_umask; ++umask) {
internal::pstore(data2, internal::pset1<Packet>(Scalar(0)));
h.store(data2, h.loadu(data1 + offset), umask);
for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
}
}
}
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul);
CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd);
CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub);
CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
negate_test<Scalar, Packet>(data1, data2, ref, PacketSize);
CHECK_CWISE1_IF(PacketTraits::HasReciprocal, REF_RECIPROCAL, internal::preciprocal);
CHECK_CWISE1(numext::conj, internal::pconj);
CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
for (int offset = 0; offset < 3; ++offset) {
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset];
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize];
Packet A0, A1, A2, A3;
internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
internal::pstore(data2 + 0 * PacketSize, A0);
internal::pstore(data2 + 1 * PacketSize, A1);
internal::pstore(data2 + 2 * PacketSize, A2);
internal::pstore(data2 + 3 * PacketSize, A3);
VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4");
}
{
for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize];
Packet A0, A1;
internal::pbroadcast2<Packet>(data1, A0, A1);
internal::pstore(data2 + 0 * PacketSize, A0);
internal::pstore(data2 + 1 * PacketSize, A1);
VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2");
}
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
if (PacketSize > 1) {
// apply different offsets to check that ploaddup is robust to unaligned inputs
for (int offset = 0; offset < 4; ++offset) {
for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i];
internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset));
VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
if (PacketSize > 2) {
// apply different offsets to check that ploadquad is robust to unaligned inputs
for (int offset = 0; offset < 4; ++offset) {
for (int i = 0; i < PacketSize / 4; ++i)
ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i];
internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset));
VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad");
}
}
ref[0] = Scalar(0);
for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i];
VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
if (!internal::is_same<Packet, typename internal::unpacket_traits<Packet>::half>::value) {
int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize;
for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0);
for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i];
internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
}
ref[0] = Scalar(1);
for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1];
internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse");
internal::PacketBlock<Packet> kernel;
for (int i = 0; i < PacketSize; ++i) {
kernel.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
}
ptranspose(kernel);
for (int i = 0; i < PacketSize; ++i) {
internal::pstore(data2, kernel.packet[i]);
for (int j = 0; j < PacketSize; ++j) {
VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose");
}
}
// GeneralBlockPanelKernel also checks PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize>;
if (PacketSize > 4 && PacketSize % 4 == 0) {
internal::PacketBlock<Packet, PacketSize % 4 == 0 ? 4 : PacketSize> kernel2;
for (int i = 0; i < 4; ++i) {
kernel2.packet[i] = internal::pload<Packet>(data1 + i * PacketSize);
}
ptranspose(kernel2);
int data_counter = 0;
for (int i = 0; i < PacketSize; ++i) {
for (int j = 0; j < 4; ++j) {
data2[data_counter++] = data1[j * PacketSize + i];
}
}
for (int i = 0; i < 4; ++i) {
internal::pstore(data3, kernel2.packet[i]);
for (int j = 0; j < PacketSize; ++j) {
VERIFY(test::isApproxAbs(data3[j], data2[i * PacketSize + j], refvalue) && "ptranspose");
}
}
}
if (PacketTraits::HasBlend) {
Packet thenPacket = internal::pload<Packet>(data1);
Packet elsePacket = internal::pload<Packet>(data2);
EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector;
for (int i = 0; i < PacketSize; ++i) {
selector.select[i] = i;
}
Packet blend = internal::pblend(selector, thenPacket, elsePacket);
EIGEN_ALIGN_MAX Scalar result[size];
internal::pstore(result, blend);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue));
}
}
{
for (int i = 0; i < PacketSize; ++i) {
// "if" mask
// Note: it's UB to load 0xFF directly into a `bool`.
uint8_t v =
internal::random<bool>() ? (std::is_same<Scalar, bool>::value ? static_cast<uint8_t>(true) : 0xff) : 0;
// Avoid strict aliasing violation by using memset.
memset(static_cast<void*>(data1 + i), v, sizeof(Scalar));
// "then" packet
data1[i + PacketSize] = internal::random<Scalar>();
// "else" packet
data1[i + 2 * PacketSize] = internal::random<Scalar>();
}
CHECK_CWISE3_IF(true, internal::pselect, internal::pselect);
}
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>();
}
CHECK_CWISE1(internal::pzero, internal::pzero);
CHECK_CWISE2_IF(true, internal::por, internal::por);
CHECK_CWISE2_IF(true, internal::pxor, internal::pxor);
CHECK_CWISE2_IF(true, internal::pand, internal::pand);
packetmath_boolean_mask_ops<Scalar, Packet>();
packetmath_pcast_ops_runner<Scalar, Packet>::run();
packetmath_minus_zero_add_test<Scalar, Packet>::run();
for (int i = 0; i < size; ++i) {
data1[i] = numext::abs(internal::random<Scalar>());
}
CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt);
CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
CHECK_CWISE3_IF(true, REF_MADD, internal::pmadd);
if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) {
nmsub_test<Scalar, Packet>(data1, data2, ref, PacketSize);
}
// For pmsub, pnmadd, the values can cancel each other to become near zero,
// which can lead to very flaky tests. Here we ensure the signs are such that
// they do not cancel.
for (int i = 0; i < PacketSize; ++i) {
data1[i] = numext::abs(internal::random<Scalar>());
data1[i + PacketSize] = numext::abs(internal::random<Scalar>());
data1[i + 2 * PacketSize] = Scalar(0) - numext::abs(internal::random<Scalar>());
}
if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) {
CHECK_CWISE3_IF(true, REF_MSUB, internal::pmsub);
CHECK_CWISE3_IF(true, REF_NMADD, internal::pnmadd);
}
}
// Notice that this definition works for complex types as well.
// c++11 has std::log2 for real, but not for complex types.
template <typename Scalar>
Scalar log2(Scalar x) {
return Scalar(EIGEN_LOG2E) * std::log(x);
}
// Create a functor out of a function so it can be passed (with overloads)
// to another function as an input argument.
#define CREATE_FUNCTOR(Name, Func) \
struct Name { \
template <typename T> \
T operator()(const T& val) const { \
return Func(val); \
} \
}
CREATE_FUNCTOR(psqrt_functor, internal::psqrt);
CREATE_FUNCTOR(prsqrt_functor, internal::prsqrt);
// TODO(rmlarsen): Run this test for more functions.
template <bool Cond, typename Scalar, typename Packet, typename RefFunctorT, typename FunctorT>
void packetmath_test_IEEE_corner_cases(const RefFunctorT& ref_fun, const FunctorT& fun) {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const Scalar norm_min = (std::numeric_limits<Scalar>::min)();
const Scalar norm_max = (std::numeric_limits<Scalar>::max)();
constexpr int size = PacketSize * 2;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar ref[size];
for (int i = 0; i < size; ++i) {
data1[i] = data2[i] = ref[i] = Scalar(0);
}
// Test for subnormals.
if (Cond && std::numeric_limits<Scalar>::has_denorm == std::denorm_present && !EIGEN_ARCH_ARM) {
for (int scale = 1; scale < 5; ++scale) {
// When EIGEN_FAST_MATH is 1 we relax the conditions slightly, and allow the function
// to return the same value for subnormals as the reference would return for zero with
// the same sign as the input.
#if EIGEN_FAST_MATH
data1[0] = Scalar(scale) * std::numeric_limits<Scalar>::denorm_min();
data1[1] = -data1[0];
test::packet_helper<Cond, Packet> h;
h.store(data2, fun(h.load(data1)));
for (int i = 0; i < PacketSize; ++i) {
const Scalar ref_zero = ref_fun(data1[i] < 0 ? -Scalar(0) : Scalar(0));
const Scalar ref_val = ref_fun(data1[i]);
VERIFY(((std::isnan)(data2[i]) && (std::isnan)(ref_val)) || data2[i] == ref_zero ||
verifyIsApprox(data2[i], ref_val));
}
#else
CHECK_CWISE1_IF(Cond, ref_fun, fun);
#endif
}
}
// Test for smallest normalized floats.
data1[0] = norm_min;
data1[1] = -data1[0];
CHECK_CWISE1_IF(Cond, ref_fun, fun);
// Test for largest floats.
data1[0] = norm_max;
data1[1] = -data1[0];
CHECK_CWISE1_IF(Cond, ref_fun, fun);
// Test for zeros.
data1[0] = Scalar(0.0);
data1[1] = -data1[0];
CHECK_CWISE1_IF(Cond, ref_fun, fun);
// Test for infinities.
data1[0] = NumTraits<Scalar>::infinity();
data1[1] = -data1[0];
CHECK_CWISE1_IF(Cond, ref_fun, fun);
// Test for quiet NaNs.
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = -std::numeric_limits<Scalar>::quiet_NaN();
CHECK_CWISE1_IF(Cond, ref_fun, fun);
}
template <typename Scalar, typename Packet>
void packetmath_real() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize * 4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4] = {};
EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4] = {};
EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4] = {};
// Negate with -0.
if (PacketTraits::HasNegate) {
test::packet_helper<PacketTraits::HasNegate, Packet> h;
data1[0] = Scalar{-0};
h.store(data2, internal::pnegate(h.load(data1)));
typedef typename internal::make_unsigned<typename internal::make_integer<Scalar>::type>::type Bits;
Bits bits = numext::bit_cast<Bits>(data2[0]);
VERIFY_IS_EQUAL(bits, static_cast<Bits>(Bits(1) << (sizeof(Scalar) * CHAR_BIT - 1)));
}
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
data2[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6)));
}
if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = Scalar(0);
CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2);
CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt);
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3)));
}
CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin);
CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos);
CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
packetmath_boolean_mask_ops_real<Scalar, Packet>();
// Rounding edge cases.
if (PacketTraits::HasRound || PacketTraits::HasCeil || PacketTraits::HasFloor || PacketTraits::HasRint) {
typedef typename internal::make_integer<Scalar>::type IntType;
// Start with values that cannot fit inside an integer, work down to less than one.
Scalar val =
numext::mini(Scalar(2) * static_cast<Scalar>(NumTraits<IntType>::highest()), NumTraits<Scalar>::highest());
std::vector<Scalar> values;
while (val > Scalar(0.25)) {
// Cover both even and odd, positive and negative cases.
values.push_back(val);
values.push_back(val + Scalar(0.3));
values.push_back(val + Scalar(0.5));
values.push_back(val + Scalar(0.8));
values.push_back(val + Scalar(1));
values.push_back(val + Scalar(1.3));
values.push_back(val + Scalar(1.5));
values.push_back(val + Scalar(1.8));
values.push_back(-val);
values.push_back(-val - Scalar(0.3));
values.push_back(-val - Scalar(0.5));
values.push_back(-val - Scalar(0.8));
values.push_back(-val - Scalar(1));
values.push_back(-val - Scalar(1.3));
values.push_back(-val - Scalar(1.5));
values.push_back(-val - Scalar(1.8));
values.push_back(Scalar(-1.5) + val); // Bug 1785.
val = val / Scalar(2);
}
values.push_back(NumTraits<Scalar>::infinity());
values.push_back(-NumTraits<Scalar>::infinity());
values.push_back(NumTraits<Scalar>::quiet_NaN());
for (size_t k = 0; k < values.size(); ++k) {
data1[0] = values[k];
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
CHECK_CWISE1_EXACT_IF(PacketTraits::HasRint, numext::rint, internal::print);
}
}
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(-1, 1));
data2[i] = Scalar(internal::random<double>(-1, 1));
}
CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
CHECK_CWISE1_IF(PacketTraits::HasATan, std::atan, internal::patan);
CHECK_CWISE1_IF(PacketTraits::HasATanh, std::atanh, internal::patanh);
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(-87, 88));
data2[i] = Scalar(internal::random<double>(-87, 88));
data1[0] = -NumTraits<Scalar>::infinity();
}
CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
if (PacketTraits::HasExp) {
// Check denormals:
#if !EIGEN_ARCH_ARM
for (int j = 0; j < 3; ++j) {
data1[0] = Scalar(std::ldexp(1, NumTraits<Scalar>::min_exponent() - j));
CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
data1[0] = -data1[0];
CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
}
#endif
// zero
data1[0] = Scalar(0);
CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp);
// inf and NaN only compare output fraction, not exponent.
test::packet_helper<PacketTraits::HasExp, Packet> h;
Packet pout;
Scalar sout;
Scalar special[] = {NumTraits<Scalar>::infinity(), -NumTraits<Scalar>::infinity(), NumTraits<Scalar>::quiet_NaN()};
for (int i = 0; i < 3; ++i) {
data1[0] = special[i];
ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize]));
h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout)));
VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp");
}
}
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(internal::random<double>(-1, 1));
data2[i] = Scalar(internal::random<double>(-1, 1));
}
for (int i = 0; i < PacketSize; ++i) {
data1[i + PacketSize] = Scalar(internal::random<int>(-4, 4));
data2[i + PacketSize] = Scalar(internal::random<double>(-4, 4));
}
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
if (PacketTraits::HasExp) {
data1[0] = Scalar(-1);
// underflow to zero
data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 55);
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// overflow to inf
data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10);
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// NaN stays NaN
data1[0] = NumTraits<Scalar>::quiet_NaN();
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
VERIFY((numext::isnan)(data2[0]));
// inf stays inf
data1[0] = NumTraits<Scalar>::infinity();
data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 10);
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// zero stays zero
data1[0] = Scalar(0);
data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10);
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// Small number big exponent.
data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::min_exponent() - 1));
data1[PacketSize] = Scalar(-NumTraits<Scalar>::min_exponent() + NumTraits<Scalar>::max_exponent());
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
// Big number small exponent.
data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::max_exponent() - 1));
data1[PacketSize] = Scalar(+NumTraits<Scalar>::min_exponent() - NumTraits<Scalar>::max_exponent());
CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp);
}
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6)));
}
data1[0] = Scalar(1e-20);
CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
if (PacketTraits::HasExp && PacketSize >= 2) {
const Scalar small = NumTraits<Scalar>::epsilon();
data1[0] = NumTraits<Scalar>::quiet_NaN();
data1[1] = small;
test::packet_helper<PacketTraits::HasExp, Packet> h;
h.store(data2, internal::pexp(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
// TODO(rmlarsen): Re-enable for bfloat16.
if (!internal::is_same<Scalar, bfloat16>::value) {
VERIFY_IS_APPROX(std::exp(small), data2[1]);
}
data1[0] = -small;
data1[1] = Scalar(0);
h.store(data2, internal::pexp(h.load(data1)));
// TODO(rmlarsen): Re-enable for bfloat16.
if (!internal::is_same<Scalar, bfloat16>::value) {
VERIFY_IS_APPROX(std::exp(-small), data2[0]);
}
VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)();
data1[1] = -(std::numeric_limits<Scalar>::min)();
h.store(data2, internal::pexp(h.load(data1)));
VERIFY_IS_APPROX(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]);
VERIFY_IS_APPROX(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
data1[0] = std::numeric_limits<Scalar>::denorm_min();
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::pexp(h.load(data1)));
VERIFY_IS_APPROX(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY_IS_APPROX(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]);
}
if (PacketTraits::HasTanh) {
// NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details.
data1[0] = NumTraits<Scalar>::quiet_NaN();
test::packet_helper<internal::packet_traits<Scalar>::HasTanh, Packet> h;
h.store(data2, internal::ptanh(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
}
if (PacketTraits::HasExp) {
internal::scalar_logistic_op<Scalar> logistic;
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<double>(-20, 20));
}
test::packet_helper<PacketTraits::HasExp, Packet> h;
h.store(data2, logistic.packetOp(h.load(data1)));
for (int i = 0; i < PacketSize; ++i) {
VERIFY_IS_APPROX(data2[i], logistic(data1[i]));
}
}
#if EIGEN_HAS_C99_MATH
data1[0] = NumTraits<Scalar>::infinity();
data1[1] = Scalar(-1);
CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p);
data1[0] = NumTraits<Scalar>::infinity();
data1[1] = -NumTraits<Scalar>::infinity();
CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1);
#endif
if (PacketSize >= 2) {
data1[0] = NumTraits<Scalar>::quiet_NaN();
data1[1] = NumTraits<Scalar>::epsilon();
if (PacketTraits::HasLog) {
test::packet_helper<PacketTraits::HasLog, Packet> h;
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
// TODO(cantonios): Re-enable for bfloat16.
if (!internal::is_same<Scalar, bfloat16>::value) {
VERIFY_IS_APPROX(std::log(data1[1]), data2[1]);
}
data1[0] = -NumTraits<Scalar>::epsilon();
data1[1] = Scalar(0);
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)();
data1[1] = -(std::numeric_limits<Scalar>::min)();
h.store(data2, internal::plog(h.load(data1)));
// TODO(cantonios): Re-enable for bfloat16.
if (!internal::is_same<Scalar, bfloat16>::value) {
VERIFY_IS_APPROX(std::log((std::numeric_limits<Scalar>::min)()), data2[0]);
}
VERIFY((numext::isnan)(data2[1]));
// Note: 32-bit arm always flushes denorms to zero.
#if !EIGEN_ARCH_ARM
if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) {
data1[0] = std::numeric_limits<Scalar>::denorm_min();
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
h.store(data2, internal::plog(h.load(data1)));
// TODO(rmlarsen): Re-enable for bfloat16.
if (!internal::is_same<Scalar, bfloat16>::value) {
VERIFY_IS_APPROX(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
}
VERIFY((numext::isnan)(data2[1]));
}
#endif
data1[0] = Scalar(-1.0f);
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
data1[0] = NumTraits<Scalar>::infinity();
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isinf)(data2[0]));
}
if (PacketTraits::HasLog1p) {
test::packet_helper<PacketTraits::HasLog1p, Packet> h;
data1[0] = Scalar(-2);
data1[1] = -NumTraits<Scalar>::infinity();
h.store(data2, internal::plog1p(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
}
packetmath_test_IEEE_corner_cases<PacketTraits::HasSqrt, Scalar, Packet>(numext::sqrt<Scalar>, psqrt_functor());
packetmath_test_IEEE_corner_cases<PacketTraits::HasRsqrt, Scalar, Packet>(numext::rsqrt<Scalar>, prsqrt_functor());
// TODO(rmlarsen): Re-enable for half and bfloat16.
if (PacketTraits::HasCos && !internal::is_same<Scalar, half>::value &&
!internal::is_same<Scalar, bfloat16>::value) {
test::packet_helper<PacketTraits::HasCos, Packet> h;
for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits<Scalar>::epsilon(); k *= Scalar(2)) {
for (int k1 = 0; k1 <= 1; ++k1) {
data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2));
h.store(data2, internal::pcos(h.load(data1)));
h.store(data2 + PacketSize, internal::psin(h.load(data1)));
VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.));
VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.));
VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.));
VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.));
VERIFY_IS_APPROX(data2[0], std::cos(data1[0]));
VERIFY_IS_APPROX(data2[1], std::cos(data1[1]));
VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0]));
VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1]));
VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1));
VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1));
}
}
data1[0] = NumTraits<Scalar>::infinity();
data1[1] = -NumTraits<Scalar>::infinity();
h.store(data2, internal::psin(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
h.store(data2, internal::pcos(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
data1[0] = NumTraits<Scalar>::quiet_NaN();
h.store(data2, internal::psin(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
h.store(data2, internal::pcos(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
data1[0] = -Scalar(0.);
h.store(data2, internal::psin(h.load(data1)));
VERIFY(test::biteq(data2[0], data1[0]));
h.store(data2, internal::pcos(h.load(data1)));
VERIFY_IS_EQUAL(data2[0], Scalar(1));
}
}
if (PacketTraits::HasReciprocal && PacketSize >= 2) {
test::packet_helper<PacketTraits::HasReciprocal, Packet> h;
const Scalar inf = NumTraits<Scalar>::infinity();
const Scalar zero = Scalar(0);
data1[0] = zero;
data1[1] = -zero;
h.store(data2, internal::preciprocal(h.load(data1)));
VERIFY_IS_EQUAL(data2[0], inf);
VERIFY_IS_EQUAL(data2[1], -inf);
data1[0] = inf;
data1[1] = -inf;
h.store(data2, internal::preciprocal(h.load(data1)));
VERIFY_IS_EQUAL(data2[0], zero);
VERIFY_IS_EQUAL(data2[1], -zero);
}
}
#define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE) \
if (COND) { \
test::packet_helper<COND, Packet> h; \
for (int i = 0; i < PacketSize; ++i) ref[i] = SCALAR(REFOP(static_cast<REFTYPE>(data1[i]))); \
h.store(data2, POP(h.load(data1))); \
VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \
}
template <typename Scalar>
Scalar propagate_nan_max(const Scalar& a, const Scalar& b) {
if ((numext::isnan)(a)) return a;
if ((numext::isnan)(b)) return b;
return (numext::maxi)(a, b);
}
template <typename Scalar>
Scalar propagate_nan_min(const Scalar& a, const Scalar& b) {
if ((numext::isnan)(a)) return a;
if ((numext::isnan)(b)) return b;
return (numext::mini)(a, b);
}
template <typename Scalar>
Scalar propagate_number_max(const Scalar& a, const Scalar& b) {
if ((numext::isnan)(a)) return b;
if ((numext::isnan)(b)) return a;
return (numext::maxi)(a, b);
}
template <typename Scalar>
Scalar propagate_number_min(const Scalar& a, const Scalar& b) {
if ((numext::isnan)(a)) return b;
if ((numext::isnan)(b)) return a;
return (numext::mini)(a, b);
}
template <typename Scalar, typename Packet>
void packetmath_notcomplex() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom();
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin);
CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax);
CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin<PropagateNumbers>);
CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
CHECK_CWISE1(numext::abs, internal::pabs);
// Vectorized versions may give a different result in the case of signed int overflow,
// which is undefined behavior (e.g. NEON).
// Also note that unsigned integers with size < sizeof(int) may be implicitly converted to a signed
// int, which can also trigger UB.
if (Eigen::NumTraits<Scalar>::IsInteger) {
for (int i = 0; i < 2 * PacketSize; ++i) {
data1[i] = data1[i] / Scalar(2);
}
}
CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff);
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i);
internal::pstore(data2, internal::plset<Packet>(data1[0]));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset");
{
unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1);
// predux_all - not needed yet
// for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff;
// VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)");
// for(int k=0; k<PacketSize; ++k)
// {
// for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0;
// VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)");
// for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff;
// }
// predux_any
for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0;
VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)");
for (int k = 0; k < PacketSize; ++k) {
for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff;
VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)");
for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00;
}
}
// Test NaN propagation.
if (!NumTraits<Scalar>::IsInteger) {
// Test reductions with no NaNs.
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNumbers>(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))) &&
"internal::predux_min<PropagateNumbers>");
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNaN>(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))) &&
"internal::predux_min<PropagateNaN>");
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNumbers>(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))) &&
"internal::predux_max<PropagateNumbers>");
ref[0] = data1[0];
for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNaN>(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))) &&
"internal::predux_max<PropagateNumbers>");
// A single NaN.
const size_t index = std::numeric_limits<size_t>::quiet_NaN() % PacketSize;
data1[index] = NumTraits<Scalar>::quiet_NaN();
VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
// All NaNs.
for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits<Scalar>::quiet_NaN();
VERIFY((numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))));
VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))));
VERIFY((numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))));
VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))));
// Test NaN propagation for coefficient-wise min and max.
for (int i = 0; i < PacketSize; ++i) {
data1[i] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
data1[i + PacketSize] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0);
}
// Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here.
CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin<PropagateNumbers>));
CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>);
CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin<PropagateNaN>));
CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax<PropagateNaN>);
}
packetmath_boolean_mask_ops_notcomplex_test<Scalar, Packet>::run();
}
template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs>
void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) {
const int PacketSize = internal::unpacket_traits<Packet>::size;
internal::conj_if<ConjLhs> cj0;
internal::conj_if<ConjRhs> cj1;
internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj;
internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj;
for (int i = 0; i < PacketSize; ++i) {
ref[i] = cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul");
}
internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul");
for (int i = 0; i < PacketSize; ++i) {
Scalar tmp = ref[i];
ref[i] += cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd");
}
internal::pstore(
pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
}
template <typename Scalar, typename Packet, bool HasExp = internal::packet_traits<Scalar>::HasExp>
struct exp_complex_test_impl {
typedef typename Scalar::value_type RealScalar;
static Scalar pexp1(const Scalar& x) {
Packet px = internal::pset1<Packet>(x);
Packet py = internal::pexp(px);
return internal::pfirst(py);
}
static Scalar cis(const RealScalar& x) { return Scalar(numext::cos(x), numext::sin(x)); }
// Verify equality with signed zero.
static bool is_exactly_equal(RealScalar a, RealScalar b) {
// NaNs are always unsigned, and always compare not equal directly.
if ((numext::isnan)(a)) {
return (numext::isnan)(b);
}
RealScalar zero(0);
#ifdef EIGEN_ARCH_ARM
// ARM automatically flushes denormals to zero.
// Preserve sign by multiplying by +0.
if (numext::abs(a) < (std::numeric_limits<RealScalar>::min)()) {
a = a * zero;
}
if (numext::abs(b) < (std::numeric_limits<RealScalar>::min)()) {
b = b * zero;
}
#endif
// Signed zero.
if (a == zero) {
// Signs are either 0 or NaN, so verify that their comparisons to zero are equal.
return (a == b) && ((numext::signbit(a) == zero) == (numext::signbit(b) == zero));
}
// Allow _some_ tolerance.
return verifyIsApprox(a, b);
}
// Verify equality with signed zero.
static bool is_exactly_equal(const Scalar& a, const Scalar& b) {
bool result = is_exactly_equal(numext::real_ref(a), numext::real_ref(b)) &&
is_exactly_equal(numext::imag_ref(a), numext::imag_ref(b));
if (!result) {
std::cout << a << " != " << b << std::endl;
}
return result;
}
static bool is_sign_exp_unspecified(const Scalar& z) {
const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
// If z is (-∞,±∞), the result is (±0,±0) (signs are unspecified)
if (numext::real_ref(z) == -inf && (numext::isinf)(numext::imag_ref(z))) {
return true;
}
// If z is (+∞,±∞), the result is (±∞,NaN) and FE_INVALID is raised (the sign of the real part is unspecified)
if (numext::real_ref(z) == +inf && (numext::isinf)(numext::imag_ref(z))) {
return true;
}
// If z is (-∞,NaN), the result is (±0,±0) (signs are unspecified)
if (numext::real_ref(z) == -inf && (numext::isnan)(numext::imag_ref(z))) {
return true;
}
// If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified)
if (numext::real_ref(z) == +inf && (numext::isnan)(numext::imag_ref(z))) {
return true;
}
return false;
}
static void run(Scalar* data1, Scalar* data2, Scalar* ref, int size) {
const int PacketSize = internal::unpacket_traits<Packet>::size;
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>());
}
CHECK_CWISE1_N(std::exp, internal::pexp, size);
// Test all corner cases (and more).
const RealScalar edges[] = {RealScalar(0),
RealScalar(1),
RealScalar(2),
RealScalar(EIGEN_PI / 2),
RealScalar(EIGEN_PI),
RealScalar(3 * EIGEN_PI / 2),
RealScalar(2 * EIGEN_PI),
numext::log(NumTraits<RealScalar>::highest()) - 1,
NumTraits<RealScalar>::highest(),
std::numeric_limits<RealScalar>::infinity(),
std::numeric_limits<RealScalar>::quiet_NaN(),
-RealScalar(0),
-RealScalar(1),
-RealScalar(2),
-RealScalar(EIGEN_PI / 2),
-RealScalar(EIGEN_PI),
-RealScalar(3 * EIGEN_PI / 2),
-RealScalar(2 * EIGEN_PI),
-numext::log(NumTraits<RealScalar>::highest()) + 1,
-NumTraits<RealScalar>::highest(),
-std::numeric_limits<RealScalar>::infinity(),
-std::numeric_limits<RealScalar>::quiet_NaN()};
for (RealScalar x : edges) {
for (RealScalar y : edges) {
Scalar z = Scalar(x, y);
Scalar w = pexp1(z);
if (is_sign_exp_unspecified(z)) {
Scalar abs_w = Scalar(numext::abs(numext::real_ref(w)), numext::abs(numext::imag_ref(w)));
Scalar expected = numext::exp(z);
Scalar abs_expected =
Scalar(numext::abs(numext::real_ref(expected)), numext::abs(numext::imag_ref(expected)));
VERIFY(is_exactly_equal(abs_w, abs_expected));
} else {
VERIFY(is_exactly_equal(w, numext::exp(z)));
}
}
}
}
};
template <typename Scalar, typename Packet>
struct exp_complex_test_impl<Scalar, Packet, false> {
typedef typename Scalar::value_type RealScalar;
static void run(Scalar*, Scalar*, Scalar*, int){};
};
template <typename Scalar, typename Packet>
void exp_complex_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) {
exp_complex_test_impl<Scalar, Packet>::run(data1, data2, ref, size);
}
template <typename Scalar, typename Packet>
void packetmath_complex() {
typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename Scalar::value_type RealScalar;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize * 4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4];
EIGEN_ALIGN_MAX RealScalar realdata[PacketSize * 4];
EIGEN_ALIGN_MAX RealScalar realref[PacketSize * 4];
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>() * Scalar(1e2);
data2[i] = internal::random<Scalar>() * Scalar(1e2);
}
test_conj_helper<Scalar, Packet, false, false>(data1, data2, ref, pval);
test_conj_helper<Scalar, Packet, false, true>(data1, data2, ref, pval);
test_conj_helper<Scalar, Packet, true, false>(data1, data2, ref, pval);
test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval);
// Test pcplxflip.
{
for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i]));
internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip");
}
if (PacketTraits::HasSqrt) {
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>());
}
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size);
CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign);
// Test misc. corner cases.
const RealScalar zero = RealScalar(0);
const RealScalar one = RealScalar(1);
const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN();
data1[0] = Scalar(zero, zero);
data1[1] = Scalar(-zero, zero);
data1[2] = Scalar(one, zero);
data1[3] = Scalar(zero, one);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
data1[0] = Scalar(-one, zero);
data1[1] = Scalar(zero, -one);
data1[2] = Scalar(one, one);
data1[3] = Scalar(-one, -one);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
data1[0] = Scalar(inf, zero);
data1[1] = Scalar(zero, inf);
data1[2] = Scalar(-inf, zero);
data1[3] = Scalar(zero, -inf);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
data1[0] = Scalar(inf, inf);
data1[1] = Scalar(-inf, inf);
data1[2] = Scalar(inf, -inf);
data1[3] = Scalar(-inf, -inf);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
data1[0] = Scalar(nan, zero);
data1[1] = Scalar(zero, nan);
data1[2] = Scalar(nan, one);
data1[3] = Scalar(one, nan);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
data1[0] = Scalar(nan, nan);
data1[1] = Scalar(inf, nan);
data1[2] = Scalar(nan, inf);
data1[3] = Scalar(-inf, nan);
CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4);
}
if (PacketTraits::HasLog) {
for (int i = 0; i < size; ++i) {
data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>());
}
CHECK_CWISE1_N(std::log, internal::plog, size);
// Test misc. corner cases.
const RealScalar zero = RealScalar(0);
const RealScalar one = RealScalar(1);
const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN();
for (RealScalar x : {zero, one, inf}) {
for (RealScalar y : {zero, one, inf}) {
data1[0] = Scalar(x, y);
data1[1] = Scalar(-x, y);
data1[2] = Scalar(x, -y);
data1[3] = Scalar(-x, -y);
CHECK_CWISE1_IM1ULP_N(std::log, internal::plog, 4);
}
}
// Set reference results to nan.
// Some architectures don't handle IEEE edge cases correctly
ref[0] = Scalar(nan, nan);
ref[1] = Scalar(nan, nan);
ref[2] = Scalar(nan, nan);
ref[3] = Scalar(nan, nan);
for (RealScalar x : {zero, one}) {
data1[0] = Scalar(x, nan);
data1[1] = Scalar(-x, nan);
data1[2] = Scalar(nan, x);
data1[3] = Scalar(nan, -x);
for (int j = 0; j < size; j += PacketSize)
internal::pstore(data2 + j, internal::plog(internal::pload<Packet>(data1 + j)));
VERIFY(test::areApprox(ref, data2, 4));
}
data1[0] = Scalar(inf, nan);
data1[1] = Scalar(-inf, nan);
data1[2] = Scalar(nan, inf);
data1[3] = Scalar(nan, -inf);
CHECK_CWISE1_IM1ULP_N(numext::log, internal::plog, 4);
}
exp_complex_test<Scalar, Packet>(data1, data2, ref, size);
}
template <typename Scalar, typename Packet>
void packetmath_scatter_gather() {
typedef typename NumTraits<Scalar>::Real RealScalar;
const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize];
RealScalar refvalue = RealScalar(0);
for (int i = 0; i < PacketSize; ++i) {
data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
}
int stride = internal::random<int>(1, 20);
// Buffer of zeros.
EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {};
Packet packet = internal::pload<Packet>(data1);
internal::pscatter<Scalar, Packet>(buffer, packet, stride);
for (int i = 0; i < PacketSize * 20; ++i) {
if ((i % stride) == 0 && i < stride * PacketSize) {
VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter");
} else {
VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
}
}
for (int i = 0; i < PacketSize * 7; ++i) {
buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize);
}
packet = internal::pgather<Scalar, Packet>(buffer, 7);
internal::pstore(data1, packet);
for (int i = 0; i < PacketSize; ++i) {
VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather");
}
for (Index N = 0; N <= PacketSize; ++N) {
for (Index i = 0; i < N; ++i) {
data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
}
for (Index i = 0; i < N * 20; ++i) {
buffer[i] = Scalar(0);
}
packet = internal::pload_partial<Packet>(data1, N);
internal::pscatter_partial<Scalar, Packet>(buffer, packet, stride, N);
for (Index i = 0; i < N * 20; ++i) {
if ((i % stride) == 0 && i < stride * N) {
VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter_partial");
} else {
VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter_partial");
}
}
for (Index i = 0; i < N * 7; ++i) {
buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize);
}
packet = internal::pgather_partial<Scalar, Packet>(buffer, 7, N);
internal::pstore_partial(data1, packet, N);
for (Index i = 0; i < N; ++i) {
VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather_partial");
}
}
}
namespace Eigen {
namespace test {
template <typename Scalar, typename PacketType>
struct runall<Scalar, PacketType, false, false> { // i.e. float or double
static void run() {
packetmath<Scalar, PacketType>();
packetmath_scatter_gather<Scalar, PacketType>();
packetmath_notcomplex<Scalar, PacketType>();
packetmath_real<Scalar, PacketType>();
}
};
template <typename Scalar, typename PacketType>
struct runall<Scalar, PacketType, false, true> { // i.e. int
static void run() {
packetmath<Scalar, PacketType>();
packetmath_scatter_gather<Scalar, PacketType>();
packetmath_notcomplex<Scalar, PacketType>();
}
};
template <typename Scalar, typename PacketType>
struct runall<Scalar, PacketType, true, false> { // i.e. complex
static void run() {
packetmath<Scalar, PacketType>();
packetmath_scatter_gather<Scalar, PacketType>();
packetmath_complex<Scalar, PacketType>();
}
};
} // namespace test
} // namespace Eigen
EIGEN_DECLARE_TEST(packetmath) {
g_first_pass = true;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(test::runner<float>::run());
CALL_SUBTEST_2(test::runner<double>::run());
CALL_SUBTEST_3(test::runner<int8_t>::run());
CALL_SUBTEST_4(test::runner<uint8_t>::run());
CALL_SUBTEST_5(test::runner<int16_t>::run());
CALL_SUBTEST_6(test::runner<uint16_t>::run());
CALL_SUBTEST_7(test::runner<int32_t>::run());
CALL_SUBTEST_8(test::runner<uint32_t>::run());
CALL_SUBTEST_9(test::runner<int64_t>::run());
CALL_SUBTEST_10(test::runner<uint64_t>::run());
CALL_SUBTEST_11(test::runner<std::complex<float>>::run());
CALL_SUBTEST_12(test::runner<std::complex<double>>::run());
CALL_SUBTEST_13(test::runner<half>::run());
CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>()));
CALL_SUBTEST_15(test::runner<bfloat16>::run());
g_first_pass = false;
}
}