blob: 62bb7742cd0bba70349ac8e55c514aa4d7f76935 [file] [log] [blame] [edit]
// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_100) || defined(EIGEN_TEST_PART_ALL)
#define EIGEN_NO_DEPRECATED_WARNING
#endif
#include "main.h"
template <typename MatrixType>
void triangular_deprecated(const MatrixType& m) {
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1, m2, m3, m4;
m1.setRandom(rows, cols);
m2.setRandom(rows, cols);
m3 = m1;
m4 = m2;
// deprecated method:
m1.template triangularView<Eigen::Upper>().swap(m2);
// use this method instead:
m3.template triangularView<Eigen::Upper>().swap(m4.template triangularView<Eigen::Upper>());
VERIFY_IS_APPROX(m1, m3);
VERIFY_IS_APPROX(m2, m4);
// deprecated method:
m1.template triangularView<Eigen::Lower>().swap(m4);
// use this method instead:
m3.template triangularView<Eigen::Lower>().swap(m2.template triangularView<Eigen::Lower>());
VERIFY_IS_APPROX(m1, m3);
VERIFY_IS_APPROX(m2, m4);
}
template <typename MatrixType>
void triangular_square(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealScalar largerEps = 10 * test_precision<RealScalar>();
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols),
r1(rows, cols), r2(rows, cols);
VectorType v2 = VectorType::Random(rows);
VectorType v3 = VectorType::Zero(rows);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows * cols > 1) {
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1, r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = m2.transpose() + m2;
m3 = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().transpose().toDenseMatrix(), m1);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Lower>() = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
m1 = MatrixType::Random(rows, cols);
for (int i = 0; i < rows; ++i)
while (numext::abs2(m1(i, i)) < RealScalar(1e-1)) m1(i, i) = internal::random<Scalar>();
Transpose<MatrixType> trm4(m4);
// test back and forward substitution with a vector as the rhs
m3 = m1.template triangularView<Upper>();
v3 = m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(v2));
VERIFY(v2.isApprox(v3, largerEps));
m3 = m1.template triangularView<Lower>();
v3 = m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(v2));
VERIFY(v2.isApprox(v3, largerEps));
m3 = m1.template triangularView<Upper>();
v3 = m3 * (m1.template triangularView<Upper>().solve(v2));
VERIFY(v2.isApprox(v3, largerEps));
m3 = m1.template triangularView<Lower>();
v3 = m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2));
VERIFY(v2.isApprox(v3, largerEps));
// test back and forward substitution with a matrix as the rhs
m3 = m1.template triangularView<Upper>();
m4 = m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(m2));
VERIFY(m2.isApprox(m4, largerEps));
m3 = m1.template triangularView<Lower>();
m4 = m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(m2));
VERIFY(m2.isApprox(m4, largerEps));
m3 = m1.template triangularView<Upper>();
m4 = m3 * (m1.template triangularView<Upper>().solve(m2));
VERIFY(m2.isApprox(m4, largerEps));
m3 = m1.template triangularView<Lower>();
m4 = m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2));
VERIFY(m2.isApprox(m4, largerEps));
// check M * inv(L) using in place API
m4 = m3;
m1.transpose().template triangularView<Eigen::Upper>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Lower>(), m3);
// check M * inv(U) using in place API
m3 = m1.template triangularView<Upper>();
m4 = m3;
m3.transpose().template triangularView<Eigen::Lower>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Upper>(), m3);
// check solve with unit diagonal
m3 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isApprox(m3 * (m1.template triangularView<UnitUpper>().solve(m2)), largerEps));
// VERIFY(( m1.template triangularView<Upper>()
// * m2.template triangularView<Upper>()).isUpperTriangular());
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2, m3);
m1.setRandom();
m3 = m1.template triangularView<Upper>();
Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> m5(cols, internal::random<int>(1, 20));
m5.setRandom();
Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> m6(internal::random<int>(1, 20), rows);
m6.setRandom();
VERIFY_IS_APPROX(m1.template triangularView<Upper>() * m5, m3 * m5);
VERIFY_IS_APPROX(m6 * m1.template triangularView<Upper>(), m6 * m3);
m1up = m1.template triangularView<Upper>();
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(),
m1up.adjoint());
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(),
m1up.adjoint());
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().diagonal(), m1.diagonal());
m3.setRandom();
const MatrixType& m3c(m3);
VERIFY(is_same_type(m3c.template triangularView<Lower>(),
m3.template triangularView<Lower>().template conjugateIf<false>()));
VERIFY(is_same_type(m3c.template triangularView<Lower>().conjugate(),
m3.template triangularView<Lower>().template conjugateIf<true>()));
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template triangularView<Lower>().toDenseMatrix());
VERIFY(is_same_type(m3c.template selfadjointView<Lower>(),
m3.template selfadjointView<Lower>().template conjugateIf<false>()));
VERIFY(is_same_type(m3c.template selfadjointView<Lower>().conjugate(),
m3.template selfadjointView<Lower>().template conjugateIf<true>()));
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template selfadjointView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template selfadjointView<Lower>().toDenseMatrix());
}
template <typename MatrixType>
void triangular_rect(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols),
r1(rows, cols), r2(rows, cols);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows > 1 && cols > 1) {
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1, r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = 3 * m2;
m3 = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Upper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<Lower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyUpper>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyUpper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyLower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyLower>().toDenseMatrix(), m1);
m1.setRandom();
m2 = m1.template triangularView<Upper>();
VERIFY(m2.isUpperTriangular());
VERIFY(!m2.isLowerTriangular());
m2 = m1.template triangularView<StrictlyUpper>();
VERIFY(m2.isUpperTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isUpperTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<Lower>();
VERIFY(m2.isLowerTriangular());
VERIFY(!m2.isUpperTriangular());
m2 = m1.template triangularView<StrictlyLower>();
VERIFY(m2.isLowerTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitLower>();
VERIFY(m2.isLowerTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2, m3);
}
void bug_159() {
Matrix3d m = Matrix3d::Random().triangularView<Lower>();
EIGEN_UNUSED_VARIABLE(m)
}
EIGEN_DECLARE_TEST(triangular) {
int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE, 20);
for (int i = 0; i < g_repeat; i++) {
int r = internal::random<int>(2, maxsize);
TEST_SET_BUT_UNUSED_VARIABLE(r)
int c = internal::random<int>(2, maxsize);
TEST_SET_BUT_UNUSED_VARIABLE(c)
CALL_SUBTEST_1(triangular_square(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(triangular_square(Matrix<float, 2, 2>()));
CALL_SUBTEST_3(triangular_square(Matrix3d()));
CALL_SUBTEST_4(triangular_square(Matrix<std::complex<float>, 8, 8>()));
CALL_SUBTEST_5(triangular_square(MatrixXcd(r, r)));
CALL_SUBTEST_6(triangular_square(Matrix<float, Dynamic, Dynamic, RowMajor>(r, r)));
CALL_SUBTEST_7(triangular_rect(Matrix<float, 4, 5>()));
CALL_SUBTEST_8(triangular_rect(Matrix<double, 6, 2>()));
CALL_SUBTEST_9(triangular_rect(MatrixXcf(r, c)));
CALL_SUBTEST_5(triangular_rect(MatrixXcd(r, c)));
CALL_SUBTEST_6(triangular_rect(Matrix<float, Dynamic, Dynamic, RowMajor>(r, c)));
CALL_SUBTEST_100(triangular_deprecated(Matrix<float, 5, 7>()));
CALL_SUBTEST_100(triangular_deprecated(MatrixXd(r, c)));
}
CALL_SUBTEST_1(bug_159());
}