blob: 182bd2e079d1e9a62bfecbc516bf32fb1fce7b01 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DGMRES_H
#define EIGEN_DGMRES_H
#include "../../../../Eigen/Eigenvalues"
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
template <typename MatrixType_, typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> >
class DGMRES;
namespace internal {
template <typename MatrixType_, typename Preconditioner_>
struct traits<DGMRES<MatrixType_, Preconditioner_> > {
typedef MatrixType_ MatrixType;
typedef Preconditioner_ Preconditioner;
};
/** \brief Computes a permutation vector to have a sorted sequence
* \param vec The vector to reorder.
* \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
* \param ncut Put the ncut smallest elements at the end of the vector
* WARNING This is an expensive sort, so should be used only
* for small size vectors
* TODO Use modified QuickSplit or std::nth_element to get the smallest values
*/
template <typename VectorType, typename IndexType>
void sortWithPermutation(VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut) {
eigen_assert(vec.size() == perm.size());
bool flag;
for (Index k = 0; k < ncut; k++) {
flag = false;
for (Index j = 0; j < vec.size() - 1; j++) {
if (vec(perm(j)) < vec(perm(j + 1))) {
std::swap(perm(j), perm(j + 1));
flag = true;
}
if (!flag) break; // The vector is in sorted order
}
}
}
} // namespace internal
/**
* \ingroup IterativeLinearSolvers_Module
* \brief A Restarted GMRES with deflation.
* This class implements a modification of the GMRES solver for
* sparse linear systems. The basis is built with modified
* Gram-Schmidt. At each restart, a few approximated eigenvectors
* corresponding to the smallest eigenvalues are used to build a
* preconditioner for the next cycle. This preconditioner
* for deflation can be combined with any other preconditioner,
* the IncompleteLUT for instance. The preconditioner is applied
* at right of the matrix and the combination is multiplicative.
*
* \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner
* Typical usage :
* \code
* SparseMatrix<double> A;
* VectorXd x, b;
* //Fill A and b ...
* DGMRES<SparseMatrix<double> > solver;
* solver.set_restart(30); // Set restarting value
* solver.setEigenv(1); // Set the number of eigenvalues to deflate
* solver.compute(A);
* x = solver.solve(b);
* \endcode
*
* DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* References :
* [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
* Algebraic Solvers for Linear Systems Arising from Compressible
* Flows, Computers and Fluids, In Press,
* https://doi.org/10.1016/j.compfluid.2012.03.023
* [2] K. Burrage and J. Erhel, On the performance of various
* adaptive preconditioned GMRES strategies, 5(1998), 101-121.
* [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
* preconditioned by deflation,J. Computational and Applied
* Mathematics, 69(1996), 303-318.
*
*/
template <typename MatrixType_, typename Preconditioner_>
class DGMRES : public IterativeSolverBase<DGMRES<MatrixType_, Preconditioner_> > {
typedef IterativeSolverBase<DGMRES> Base;
using Base::m_error;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_iterations;
using Base::m_tolerance;
using Base::matrix;
public:
using Base::_solve_impl;
using Base::_solve_with_guess_impl;
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::RealScalar RealScalar;
typedef Preconditioner_ Preconditioner;
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<RealScalar, Dynamic, Dynamic> DenseRealMatrix;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
typedef Matrix<RealScalar, Dynamic, 1> DenseRealVector;
typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
/** Default constructor. */
DGMRES()
: Base(), m_restart(30), m_neig(0), m_r(0), m_maxNeig(5), m_isDeflAllocated(false), m_isDeflInitialized(false) {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template <typename MatrixDerived>
explicit DGMRES(const EigenBase<MatrixDerived>& A)
: Base(A.derived()),
m_restart(30),
m_neig(0),
m_r(0),
m_maxNeig(5),
m_isDeflAllocated(false),
m_isDeflInitialized(false) {}
~DGMRES() {}
/** \internal */
template <typename Rhs, typename Dest>
void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
EIGEN_STATIC_ASSERT(Rhs::ColsAtCompileTime == 1 || Dest::ColsAtCompileTime == 1,
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX);
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
dgmres(matrix(), b, x, Base::m_preconditioner);
}
/**
* Get the restart value
*/
Index restart() { return m_restart; }
/**
* Set the restart value (default is 30)
*/
void set_restart(const Index restart) { m_restart = restart; }
/**
* Set the number of eigenvalues to deflate at each restart
*/
void setEigenv(const Index neig) {
m_neig = neig;
if (neig + 1 > m_maxNeig) m_maxNeig = neig + 1; // To allow for complex conjugates
}
/**
* Get the size of the deflation subspace size
*/
Index deflSize() { return m_r; }
/**
* Set the maximum size of the deflation subspace
*/
void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
protected:
// DGMRES algorithm
template <typename Rhs, typename Dest>
void dgmres(const MatrixType& mat, const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
// Perform one cycle of GMRES
template <typename Dest>
Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta,
const RealScalar& normRhs, Index& nbIts) const;
// Compute data to use for deflation
Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it,
StorageIndex& neig) const;
// Apply deflation to a vector
template <typename RhsType, typename DestType>
Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
// Init data for deflation
void dgmresInitDeflation(Index& rows) const;
mutable DenseMatrix m_V; // Krylov basis vectors
mutable DenseMatrix m_H; // Hessenberg matrix
mutable DenseMatrix m_Hes; // Initial hessenberg matrix without Givens rotations applied
mutable Index m_restart; // Maximum size of the Krylov subspace
mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
mutable StorageIndex m_neig; // Number of eigenvalues to extract at each restart
mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
mutable RealScalar m_lambdaN; // Modulus of the largest eigenvalue of A
mutable bool m_isDeflAllocated;
mutable bool m_isDeflInitialized;
// Adaptive strategy
mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
mutable bool m_force; // Force the use of deflation at each restart
};
/**
* \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
*
* A right preconditioner is used combined with deflation.
*
*/
template <typename MatrixType_, typename Preconditioner_>
template <typename Rhs, typename Dest>
void DGMRES<MatrixType_, Preconditioner_>::dgmres(const MatrixType& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond) const {
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
RealScalar normRhs = rhs.norm();
if (normRhs <= considerAsZero) {
x.setZero();
m_error = 0;
return;
}
// Initialization
m_isDeflInitialized = false;
Index n = mat.rows();
DenseVector r0(n);
Index nbIts = 0;
m_H.resize(m_restart + 1, m_restart);
m_Hes.resize(m_restart, m_restart);
m_V.resize(n, m_restart + 1);
// Initial residual vector and initial norm
if (x.squaredNorm() == 0) x = precond.solve(rhs);
r0 = rhs - mat * x;
RealScalar beta = r0.norm();
m_error = beta / normRhs;
if (m_error < m_tolerance)
m_info = Success;
else
m_info = NoConvergence;
// Iterative process
while (nbIts < m_iterations && m_info == NoConvergence) {
dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
// Compute the new residual vector for the restart
if (nbIts < m_iterations && m_info == NoConvergence) {
r0 = rhs - mat * x;
beta = r0.norm();
}
}
}
/**
* \brief Perform one restart cycle of DGMRES
* \param mat The coefficient matrix
* \param precond The preconditioner
* \param x the new approximated solution
* \param r0 The initial residual vector
* \param beta The norm of the residual computed so far
* \param normRhs The norm of the right hand side vector
* \param nbIts The number of iterations
*/
template <typename MatrixType_, typename Preconditioner_>
template <typename Dest>
Index DGMRES<MatrixType_, Preconditioner_>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x,
DenseVector& r0, RealScalar& beta, const RealScalar& normRhs,
Index& nbIts) const {
// Initialization
DenseVector g(m_restart + 1); // Right hand side of the least square problem
g.setZero();
g(0) = Scalar(beta);
m_V.col(0) = r0 / beta;
m_info = NoConvergence;
std::vector<JacobiRotation<Scalar> > gr(m_restart); // Givens rotations
Index it = 0; // Number of inner iterations
Index n = mat.rows();
DenseVector tv1(n), tv2(n); // Temporary vectors
while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations) {
// Apply preconditioner(s) at right
if (m_isDeflInitialized) {
dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
tv2 = precond.solve(tv1);
} else {
tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
}
tv1 = mat * tv2;
// Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
Scalar coef;
for (Index i = 0; i <= it; ++i) {
coef = tv1.dot(m_V.col(i));
tv1 = tv1 - coef * m_V.col(i);
m_H(i, it) = coef;
m_Hes(i, it) = coef;
}
// Normalize the vector
coef = tv1.norm();
m_V.col(it + 1) = tv1 / coef;
m_H(it + 1, it) = coef;
// m_Hes(it+1,it) = coef;
// FIXME Check for happy breakdown
// Update Hessenberg matrix with Givens rotations
for (Index i = 1; i <= it; ++i) {
m_H.col(it).applyOnTheLeft(i - 1, i, gr[i - 1].adjoint());
}
// Compute the new plane rotation
gr[it].makeGivens(m_H(it, it), m_H(it + 1, it));
// Apply the new rotation
m_H.col(it).applyOnTheLeft(it, it + 1, gr[it].adjoint());
g.applyOnTheLeft(it, it + 1, gr[it].adjoint());
beta = std::abs(g(it + 1));
m_error = beta / normRhs;
// std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
it++;
nbIts++;
if (m_error < m_tolerance) {
// The method has converged
m_info = Success;
break;
}
}
// Compute the new coefficients by solving the least square problem
// it++;
// FIXME Check first if the matrix is singular ... zero diagonal
DenseVector nrs(m_restart);
nrs = m_H.topLeftCorner(it, it).template triangularView<Upper>().solve(g.head(it));
// Form the new solution
if (m_isDeflInitialized) {
tv1 = m_V.leftCols(it) * nrs;
dgmresApplyDeflation(tv1, tv2);
x = x + precond.solve(tv2);
} else
x = x + precond.solve(m_V.leftCols(it) * nrs);
// Go for a new cycle and compute data for deflation
if (nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r + m_neig) < m_maxNeig)
dgmresComputeDeflationData(mat, precond, it, m_neig);
return 0;
}
template <typename MatrixType_, typename Preconditioner_>
void DGMRES<MatrixType_, Preconditioner_>::dgmresInitDeflation(Index& rows) const {
m_U.resize(rows, m_maxNeig);
m_MU.resize(rows, m_maxNeig);
m_T.resize(m_maxNeig, m_maxNeig);
m_lambdaN = 0.0;
m_isDeflAllocated = true;
}
template <typename MatrixType_, typename Preconditioner_>
inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(
const ComplexSchur<DenseMatrix>& schurofH) const {
return schurofH.matrixT().diagonal();
}
template <typename MatrixType_, typename Preconditioner_>
inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(
const RealSchur<DenseMatrix>& schurofH) const {
const DenseMatrix& T = schurofH.matrixT();
Index it = T.rows();
ComplexVector eig(it);
Index j = 0;
while (j < it - 1) {
if (T(j + 1, j) == Scalar(0)) {
eig(j) = std::complex<RealScalar>(T(j, j), RealScalar(0));
j++;
} else {
eig(j) = std::complex<RealScalar>(T(j, j), T(j + 1, j));
eig(j + 1) = std::complex<RealScalar>(T(j, j + 1), T(j + 1, j + 1));
j++;
}
}
if (j < it - 1) eig(j) = std::complex<RealScalar>(T(j, j), RealScalar(0));
return eig;
}
template <typename MatrixType_, typename Preconditioner_>
Index DGMRES<MatrixType_, Preconditioner_>::dgmresComputeDeflationData(const MatrixType& mat,
const Preconditioner& precond, const Index& it,
StorageIndex& neig) const {
// First, find the Schur form of the Hessenberg matrix H
std::conditional_t<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> > schurofH;
bool computeU = true;
DenseMatrix matrixQ(it, it);
matrixQ.setIdentity();
schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it, it), matrixQ, computeU);
ComplexVector eig(it);
Matrix<StorageIndex, Dynamic, 1> perm(it);
eig = this->schurValues(schurofH);
// Reorder the absolute values of Schur values
DenseRealVector modulEig(it);
for (Index j = 0; j < it; ++j) modulEig(j) = std::abs(eig(j));
perm.setLinSpaced(it, 0, internal::convert_index<StorageIndex>(it - 1));
internal::sortWithPermutation(modulEig, perm, neig);
if (!m_lambdaN) {
m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
}
// Count the real number of extracted eigenvalues (with complex conjugates)
Index nbrEig = 0;
while (nbrEig < neig) {
if (eig(perm(it - nbrEig - 1)).imag() == RealScalar(0))
nbrEig++;
else
nbrEig += 2;
}
// Extract the Schur vectors corresponding to the smallest Ritz values
DenseMatrix Sr(it, nbrEig);
Sr.setZero();
for (Index j = 0; j < nbrEig; j++) {
Sr.col(j) = schurofH.matrixU().col(perm(it - j - 1));
}
// Form the Schur vectors of the initial matrix using the Krylov basis
DenseMatrix X;
X = m_V.leftCols(it) * Sr;
if (m_r) {
// Orthogonalize X against m_U using modified Gram-Schmidt
for (Index j = 0; j < nbrEig; j++)
for (Index k = 0; k < m_r; k++) X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j))) * m_U.col(k);
}
// Compute m_MX = A * M^-1 * X
Index m = m_V.rows();
if (!m_isDeflAllocated) dgmresInitDeflation(m);
DenseMatrix MX(m, nbrEig);
DenseVector tv1(m);
for (Index j = 0; j < nbrEig; j++) {
tv1 = mat * X.col(j);
MX.col(j) = precond.solve(tv1);
}
// Update m_T = [U'MU U'MX; X'MU X'MX]
m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
if (m_r) {
m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
}
// Save X into m_U and m_MX in m_MU
for (Index j = 0; j < nbrEig; j++) m_U.col(m_r + j) = X.col(j);
for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r + j) = MX.col(j);
// Increase the size of the invariant subspace
m_r += nbrEig;
// Factorize m_T into m_luT
m_luT.compute(m_T.topLeftCorner(m_r, m_r));
// FIXME CHeck if the factorization was correctly done (nonsingular matrix)
m_isDeflInitialized = true;
return 0;
}
template <typename MatrixType_, typename Preconditioner_>
template <typename RhsType, typename DestType>
Index DGMRES<MatrixType_, Preconditioner_>::dgmresApplyDeflation(const RhsType& x, DestType& y) const {
DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
y = x + m_U.leftCols(m_r) * (m_lambdaN * m_luT.solve(x1) - x1);
return 0;
}
} // end namespace Eigen
#endif