| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::RowMajor; |
| using Eigen::Tensor; |
| |
| using Scalar = float; |
| |
| using TypedLTOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LT, true>; |
| using TypedLEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_LE, true>; |
| using TypedGTOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GT, true>; |
| using TypedGEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_GE, true>; |
| using TypedEQOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_EQ, true>; |
| using TypedNEOp = internal::scalar_cmp_op<Scalar, Scalar, internal::cmp_NEQ, true>; |
| |
| static void test_orderings() { |
| Tensor<Scalar, 3> mat1(2, 3, 7); |
| Tensor<Scalar, 3> mat2(2, 3, 7); |
| |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| Tensor<bool, 3> lt(2, 3, 7); |
| Tensor<bool, 3> le(2, 3, 7); |
| Tensor<bool, 3> gt(2, 3, 7); |
| Tensor<bool, 3> ge(2, 3, 7); |
| |
| Tensor<Scalar, 3> typed_lt(2, 3, 7); |
| Tensor<Scalar, 3> typed_le(2, 3, 7); |
| Tensor<Scalar, 3> typed_gt(2, 3, 7); |
| Tensor<Scalar, 3> typed_ge(2, 3, 7); |
| |
| lt = mat1 < mat2; |
| le = mat1 <= mat2; |
| gt = mat1 > mat2; |
| ge = mat1 >= mat2; |
| |
| typed_lt = mat1.binaryExpr(mat2, TypedLTOp()); |
| typed_le = mat1.binaryExpr(mat2, TypedLEOp()); |
| typed_gt = mat1.binaryExpr(mat2, TypedGTOp()); |
| typed_ge = mat1.binaryExpr(mat2, TypedGEOp()); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(lt(i, j, k), mat1(i, j, k) < mat2(i, j, k)); |
| VERIFY_IS_EQUAL(le(i, j, k), mat1(i, j, k) <= mat2(i, j, k)); |
| VERIFY_IS_EQUAL(gt(i, j, k), mat1(i, j, k) > mat2(i, j, k)); |
| VERIFY_IS_EQUAL(ge(i, j, k), mat1(i, j, k) >= mat2(i, j, k)); |
| |
| VERIFY_IS_EQUAL(lt(i, j, k), (bool)typed_lt(i, j, k)); |
| VERIFY_IS_EQUAL(le(i, j, k), (bool)typed_le(i, j, k)); |
| VERIFY_IS_EQUAL(gt(i, j, k), (bool)typed_gt(i, j, k)); |
| VERIFY_IS_EQUAL(ge(i, j, k), (bool)typed_ge(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| static void test_equality() { |
| Tensor<Scalar, 3> mat1(2, 3, 7); |
| Tensor<Scalar, 3> mat2(2, 3, 7); |
| |
| mat1.setRandom(); |
| mat2.setRandom(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| if (internal::random<bool>()) { |
| mat2(i, j, k) = mat1(i, j, k); |
| } |
| } |
| } |
| } |
| |
| Tensor<bool, 3> eq(2, 3, 7); |
| Tensor<bool, 3> ne(2, 3, 7); |
| |
| Tensor<Scalar, 3> typed_eq(2, 3, 7); |
| Tensor<Scalar, 3> typed_ne(2, 3, 7); |
| |
| eq = (mat1 == mat2); |
| ne = (mat1 != mat2); |
| |
| typed_eq = mat1.binaryExpr(mat2, TypedEQOp()); |
| typed_ne = mat1.binaryExpr(mat2, TypedNEOp()); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(eq(i, j, k), mat1(i, j, k) == mat2(i, j, k)); |
| VERIFY_IS_EQUAL(ne(i, j, k), mat1(i, j, k) != mat2(i, j, k)); |
| |
| VERIFY_IS_EQUAL(eq(i, j, k), (bool)typed_eq(i, j, k)); |
| VERIFY_IS_EQUAL(ne(i, j, k), (bool)typed_ne(i, j, k)); |
| } |
| } |
| } |
| } |
| |
| static void test_isnan() { |
| Tensor<Scalar, 3> mat(2, 3, 7); |
| |
| mat.setRandom(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| if (internal::random<bool>()) { |
| mat(i, j, k) = std::numeric_limits<Scalar>::quiet_NaN(); |
| } |
| } |
| } |
| } |
| Tensor<bool, 3> nan(2, 3, 7); |
| nan = (mat.isnan)(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(nan(i, j, k), (std::isnan)(mat(i, j, k))); |
| } |
| } |
| } |
| } |
| |
| static void test_isinf() { |
| Tensor<Scalar, 3> mat(2, 3, 7); |
| |
| mat.setRandom(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| if (internal::random<bool>()) { |
| mat(i, j, k) = std::numeric_limits<Scalar>::infinity(); |
| } |
| } |
| } |
| } |
| Tensor<bool, 3> inf(2, 3, 7); |
| inf = (mat.isinf)(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(inf(i, j, k), (std::isinf)(mat(i, j, k))); |
| } |
| } |
| } |
| } |
| |
| static void test_isfinite() { |
| Tensor<Scalar, 3> mat(2, 3, 7); |
| |
| mat.setRandom(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| if (internal::random<bool>()) { |
| mat(i, j, k) = std::numeric_limits<Scalar>::infinity(); |
| } |
| if (internal::random<bool>()) { |
| mat(i, j, k) = std::numeric_limits<Scalar>::quiet_NaN(); |
| } |
| } |
| } |
| } |
| Tensor<bool, 3> inf(2, 3, 7); |
| inf = (mat.isfinite)(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(inf(i, j, k), (std::isfinite)(mat(i, j, k))); |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_comparisons) { |
| CALL_SUBTEST(test_orderings()); |
| CALL_SUBTEST(test_equality()); |
| CALL_SUBTEST(test_isnan()); |
| CALL_SUBTEST(test_isinf()); |
| CALL_SUBTEST(test_isfinite()); |
| } |