Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 1 | #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| 2 | #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| 3 | |
| 4 | typedef int TensorIndex; |
| 5 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| 6 | |
| 7 | #include "unsupported/Eigen/CXX11/Tensor" |
| 8 | #include "benchmark.h" |
| 9 | |
| 10 | #define BENCHMARK_RANGE(bench, lo, hi) \ |
| 11 | BENCHMARK(bench)->Range(lo, hi) |
| 12 | |
| 13 | using Eigen::Tensor; |
| 14 | using Eigen::TensorMap; |
| 15 | |
| 16 | // TODO(bsteiner): also templatize on the input type since we have users |
| 17 | // for int8 as well as floats. |
| 18 | template <typename Device, typename T> class BenchmarkSuite { |
| 19 | public: |
| 20 | BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) |
| 21 | : m_(m), k_(k), n_(n), device_(device) { |
| 22 | initialize(); |
| 23 | } |
| 24 | |
| 25 | BenchmarkSuite(const Device& device, size_t m) |
| 26 | : m_(m), k_(m), n_(m), device_(device) { |
| 27 | initialize(); |
| 28 | } |
| 29 | |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 30 | BenchmarkSuite(const Device& device, size_t m, size_t k) |
| 31 | : m_(1), k_(k), n_(m), device_(device) { |
| 32 | initialize(); |
| 33 | } |
| 34 | |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 35 | ~BenchmarkSuite() { |
| 36 | device_.deallocate(a_); |
| 37 | device_.deallocate(b_); |
| 38 | device_.deallocate(c_); |
| 39 | } |
| 40 | |
| 41 | void memcpy(int num_iters) { |
| 42 | eigen_assert(m_ == k_ && k_ == n_); |
| 43 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 44 | for (int iter = 0; iter < 10; ++iter) { |
| 45 | device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); |
| 46 | } |
| 47 | #endif |
| 48 | StartBenchmarkTiming(); |
| 49 | for (int iter = 0; iter < num_iters; ++iter) { |
| 50 | device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); |
| 51 | } |
| 52 | // Record the number of values copied per second |
| 53 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 54 | } |
| 55 | |
| 56 | void typeCasting(int num_iters) { |
| 57 | eigen_assert(m_ == n_); |
| 58 | Eigen::array<TensorIndex, 2> sizes; |
| 59 | if (sizeof(T) >= sizeof(int)) { |
| 60 | sizes[0] = m_; |
| 61 | sizes[1] = k_; |
| 62 | } else { |
| 63 | sizes[0] = m_ * sizeof(T) / sizeof(int); |
| 64 | sizes[1] = k_ * sizeof(T) / sizeof(int); |
| 65 | } |
| 66 | const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); |
| 67 | TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); |
| 68 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 69 | for (int iter = 0; iter < 10; ++iter) { |
| 70 | B.device(device_) = A.template cast<T>(); |
| 71 | } |
| 72 | #endif |
| 73 | StartBenchmarkTiming(); |
| 74 | for (int iter = 0; iter < num_iters; ++iter) { |
| 75 | B.device(device_) = A.template cast<T>(); |
| 76 | } |
| 77 | // Record the number of values copied per second |
| 78 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 79 | } |
| 80 | |
| 81 | void random(int num_iters) { |
| 82 | eigen_assert(m_ == k_ && k_ == n_); |
| 83 | Eigen::array<TensorIndex, 2> sizes; |
| 84 | sizes[0] = m_; |
| 85 | sizes[1] = m_; |
| 86 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 87 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 88 | for (int iter = 0; iter < 10; ++iter) { |
| 89 | C.device(device_) = C.random(); |
| 90 | } |
| 91 | #endif |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 92 | StartBenchmarkTiming(); |
| 93 | for (int iter = 0; iter < num_iters; ++iter) { |
| 94 | C.device(device_) = C.random(); |
| 95 | } |
| 96 | // Record the number of random numbers generated per second |
| 97 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 98 | } |
| 99 | |
| 100 | void slicing(int num_iters) { |
| 101 | eigen_assert(m_ == k_ && k_ == n_); |
| 102 | Eigen::array<TensorIndex, 2> sizes; |
| 103 | sizes[0] = m_; |
| 104 | sizes[1] = m_; |
| 105 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 106 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 107 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 108 | |
| 109 | const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2); |
| 110 | const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); |
| 111 | const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2); |
| 112 | const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0); |
| 113 | const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2); |
| 114 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 115 | for (int iter = 0; iter < 10; ++iter) { |
| 116 | C.slice(first_quadrant, quarter_sizes).device(device_) = |
| 117 | A.slice(first_quadrant, quarter_sizes); |
| 118 | C.slice(second_quadrant, quarter_sizes).device(device_) = |
| 119 | B.slice(second_quadrant, quarter_sizes); |
| 120 | C.slice(third_quadrant, quarter_sizes).device(device_) = |
| 121 | A.slice(third_quadrant, quarter_sizes); |
| 122 | C.slice(fourth_quadrant, quarter_sizes).device(device_) = |
| 123 | B.slice(fourth_quadrant, quarter_sizes); |
| 124 | } |
| 125 | #endif |
| 126 | StartBenchmarkTiming(); |
| 127 | for (int iter = 0; iter < num_iters; ++iter) { |
| 128 | C.slice(first_quadrant, quarter_sizes).device(device_) = |
| 129 | A.slice(first_quadrant, quarter_sizes); |
| 130 | C.slice(second_quadrant, quarter_sizes).device(device_) = |
| 131 | B.slice(second_quadrant, quarter_sizes); |
| 132 | C.slice(third_quadrant, quarter_sizes).device(device_) = |
| 133 | A.slice(third_quadrant, quarter_sizes); |
| 134 | C.slice(fourth_quadrant, quarter_sizes).device(device_) = |
| 135 | B.slice(fourth_quadrant, quarter_sizes); |
| 136 | } |
| 137 | // Record the number of values copied from the rhs slice to the lhs slice |
| 138 | // each second |
| 139 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 140 | } |
| 141 | |
| 142 | void rowChip(int num_iters) { |
| 143 | Eigen::array<TensorIndex, 2> input_size; |
| 144 | input_size[0] = k_; |
| 145 | input_size[1] = n_; |
| 146 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 147 | Eigen::array<TensorIndex, 1> output_size; |
| 148 | output_size[0] = n_; |
| 149 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 150 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 151 | for (int iter = 0; iter < 10; ++iter) { |
| 152 | C.device(device_) = B.chip(iter % k_, 0); |
| 153 | } |
| 154 | #endif |
| 155 | StartBenchmarkTiming(); |
| 156 | for (int iter = 0; iter < num_iters; ++iter) { |
| 157 | C.device(device_) = B.chip(iter % k_, 0); |
| 158 | } |
| 159 | // Record the number of values copied from the rhs chip to the lhs. |
| 160 | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| 161 | } |
| 162 | |
| 163 | void colChip(int num_iters) { |
| 164 | Eigen::array<TensorIndex, 2> input_size; |
| 165 | input_size[0] = k_; |
| 166 | input_size[1] = n_; |
| 167 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 168 | Eigen::array<TensorIndex, 1> output_size; |
| 169 | output_size[0] = n_; |
| 170 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 171 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 172 | for (int iter = 0; iter < 10; ++iter) { |
| 173 | C.device(device_) = B.chip(iter % n_, 1); |
| 174 | } |
| 175 | #endif |
| 176 | StartBenchmarkTiming(); |
| 177 | for (int iter = 0; iter < num_iters; ++iter) { |
| 178 | C.device(device_) = B.chip(iter % n_, 1); |
| 179 | } |
| 180 | // Record the number of values copied from the rhs chip to the lhs. |
| 181 | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); |
| 182 | } |
| 183 | |
| 184 | void shuffling(int num_iters) { |
| 185 | eigen_assert(m_ == n_); |
| 186 | Eigen::array<TensorIndex, 2> size_a; |
| 187 | size_a[0] = m_; |
| 188 | size_a[1] = k_; |
| 189 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 190 | Eigen::array<TensorIndex, 2> size_b; |
| 191 | size_b[0] = k_; |
| 192 | size_b[1] = m_; |
| 193 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 194 | |
| 195 | Eigen::array<int, 2> shuffle; |
| 196 | shuffle[0] = 1; |
| 197 | shuffle[1] = 0; |
| 198 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 199 | for (int iter = 0; iter < 10; ++iter) { |
| 200 | B.device(device_) = A.shuffle(shuffle); |
| 201 | } |
| 202 | #endif |
| 203 | StartBenchmarkTiming(); |
| 204 | for (int iter = 0; iter < num_iters; ++iter) { |
| 205 | B.device(device_) = A.shuffle(shuffle); |
| 206 | } |
| 207 | // Record the number of values shuffled from A and copied to B each second |
| 208 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 209 | } |
| 210 | |
| 211 | void padding(int num_iters) { |
| 212 | eigen_assert(m_ == k_); |
| 213 | Eigen::array<TensorIndex, 2> size_a; |
| 214 | size_a[0] = m_; |
| 215 | size_a[1] = k_-3; |
| 216 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 217 | Eigen::array<TensorIndex, 2> size_b; |
| 218 | size_b[0] = k_; |
| 219 | size_b[1] = m_; |
| 220 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 221 | |
| 222 | #if defined(EIGEN_HAS_INDEX_LIST) |
| 223 | Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, |
| 224 | Eigen::type2indexpair<2, 1> > paddings; |
| 225 | #else |
| 226 | Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; |
| 227 | paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); |
| 228 | paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); |
| 229 | #endif |
| 230 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 231 | for (int iter = 0; iter < 10; ++iter) { |
| 232 | B.device(device_) = A.pad(paddings); |
| 233 | } |
| 234 | #endif |
| 235 | StartBenchmarkTiming(); |
| 236 | for (int iter = 0; iter < num_iters; ++iter) { |
| 237 | B.device(device_) = A.pad(paddings); |
| 238 | } |
| 239 | // Record the number of values copied from the padded tensor A each second |
| 240 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 241 | } |
| 242 | |
| 243 | void striding(int num_iters) { |
| 244 | eigen_assert(m_ == k_); |
| 245 | Eigen::array<TensorIndex, 2> size_a; |
| 246 | size_a[0] = m_; |
| 247 | size_a[1] = k_; |
| 248 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 249 | Eigen::array<TensorIndex, 2> size_b; |
| 250 | size_b[0] = m_; |
| 251 | size_b[1] = k_/2; |
| 252 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); |
| 253 | |
| 254 | #ifndef EIGEN_HAS_INDEX_LIST |
| 255 | Eigen::array<TensorIndex, 2> strides; |
| 256 | strides[0] = 1; |
| 257 | strides[1] = 2; |
| 258 | #else |
| 259 | // Take advantage of cxx11 to give the compiler information it can use to |
| 260 | // optimize the code. |
| 261 | Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides; |
| 262 | #endif |
| 263 | |
| 264 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 265 | for (int iter = 0; iter < 10; ++iter) { |
| 266 | B.device(device_) = A.stride(strides); |
| 267 | } |
| 268 | #endif |
| 269 | StartBenchmarkTiming(); |
| 270 | for (int iter = 0; iter < num_iters; ++iter) { |
| 271 | B.device(device_) = A.stride(strides); |
| 272 | } |
| 273 | // Record the number of values copied from the padded tensor A each second |
| 274 | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); |
| 275 | } |
| 276 | |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 277 | |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 278 | void broadcasting(int num_iters) { |
| 279 | Eigen::array<TensorIndex, 2> size_a; |
| 280 | size_a[0] = m_; |
| 281 | size_a[1] = 1; |
| 282 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); |
| 283 | Eigen::array<TensorIndex, 2> size_c; |
| 284 | size_c[0] = m_; |
| 285 | size_c[1] = n_; |
| 286 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); |
| 287 | |
| 288 | #ifndef EIGEN_HAS_INDEX_LIST |
| 289 | Eigen::array<int, 2> broadcast; |
| 290 | broadcast[0] = 1; |
| 291 | broadcast[1] = n_; |
| 292 | #else |
| 293 | // Take advantage of cxx11 to give the compiler information it can use to |
| 294 | // optimize the code. |
| 295 | Eigen::IndexList<Eigen::type2index<1>, int> broadcast; |
| 296 | broadcast.set(1, n_); |
| 297 | #endif |
| 298 | |
| 299 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 300 | for (int iter = 0; iter < 10; ++iter) { |
| 301 | C.device(device_) = A.broadcast(broadcast); |
| 302 | } |
| 303 | #endif |
| 304 | StartBenchmarkTiming(); |
| 305 | for (int iter = 0; iter < num_iters; ++iter) { |
| 306 | C.device(device_) = A.broadcast(broadcast); |
| 307 | } |
| 308 | // Record the number of values broadcasted from A and copied to C each second |
| 309 | finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); |
| 310 | } |
| 311 | |
| 312 | void coeffWiseOp(int num_iters) { |
| 313 | eigen_assert(m_ == k_ && k_ == n_); |
| 314 | Eigen::array<TensorIndex, 2> sizes; |
| 315 | sizes[0] = m_; |
| 316 | sizes[1] = m_; |
| 317 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 318 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 319 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 320 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 321 | for (int iter = 0; iter < 10; ++iter) { |
| 322 | C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); |
| 323 | } |
| 324 | #endif |
| 325 | StartBenchmarkTiming(); |
| 326 | for (int iter = 0; iter < num_iters; ++iter) { |
| 327 | C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); |
| 328 | } |
| 329 | // Record the number of FLOP executed per second (2 multiplications and |
| 330 | // 1 addition per value) |
| 331 | finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); |
| 332 | } |
| 333 | |
| 334 | void algebraicFunc(int num_iters) { |
| 335 | eigen_assert(m_ == k_ && k_ == n_); |
| 336 | Eigen::array<TensorIndex, 2> sizes; |
| 337 | sizes[0] = m_; |
| 338 | sizes[1] = m_; |
| 339 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 340 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 341 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 342 | |
| 343 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 344 | for (int iter = 0; iter < 10; ++iter) { |
| 345 | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); |
| 346 | } |
| 347 | #endif |
| 348 | StartBenchmarkTiming(); |
| 349 | for (int iter = 0; iter < num_iters; ++iter) { |
| 350 | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); |
| 351 | } |
| 352 | // Record the number of FLOP executed per second (assuming one operation |
| 353 | // per value) |
| 354 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 355 | } |
| 356 | |
| 357 | void transcendentalFunc(int num_iters) { |
| 358 | eigen_assert(m_ == k_ && k_ == n_); |
| 359 | Eigen::array<TensorIndex, 2> sizes; |
| 360 | sizes[0] = m_; |
| 361 | sizes[1] = m_; |
| 362 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); |
| 363 | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); |
| 364 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); |
| 365 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 366 | for (int iter = 0; iter < 10; ++iter) { |
| 367 | C.device(device_) = A.exp() + B.log(); |
| 368 | } |
| 369 | #endif |
| 370 | StartBenchmarkTiming(); |
| 371 | for (int iter = 0; iter < num_iters; ++iter) { |
| 372 | C.device(device_) = A.exp() + B.log(); |
| 373 | } |
| 374 | // Record the number of FLOP executed per second (assuming one operation |
| 375 | // per value) |
| 376 | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); |
| 377 | } |
| 378 | |
| 379 | // Row reduction |
| 380 | void rowReduction(int num_iters) { |
| 381 | Eigen::array<TensorIndex, 2> input_size; |
| 382 | input_size[0] = k_; |
| 383 | input_size[1] = n_; |
| 384 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); |
| 385 | Eigen::array<TensorIndex, 1> output_size; |
| 386 | output_size[0] = n_; |
| 387 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); |
| 388 | |
| 389 | #ifndef EIGEN_HAS_INDEX_LIST |
| 390 | Eigen::array<TensorIndex, 1> sum_along_dim; |
| 391 | sum_along_dim[0] = 0; |
| 392 | #else |
| 393 | // Take advantage of cxx11 to give the compiler information it can use to |
| 394 | // optimize the code. |
| 395 | Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; |
| 396 | #endif |
| 397 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 398 | for (int iter = 0; iter < 10; ++iter) { |
| 399 | C.device(device_) = B.sum(sum_along_dim); |
| 400 | } |
| 401 | #endif |
| 402 | StartBenchmarkTiming(); |
| 403 | for (int iter = 0; iter < num_iters; ++iter) { |
| 404 | C.device(device_) = B.sum(sum_along_dim); |
| 405 | } |
| 406 | // Record the number of FLOP executed per second (assuming one operation |
| 407 | // per value) |
| 408 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 409 | } |
| 410 | |
| 411 | // Column reduction |
| 412 | void colReduction(int num_iters) { |
| 413 | Eigen::array<TensorIndex, 2> input_size; |
| 414 | input_size[0] = k_; |
| 415 | input_size[1] = n_; |
| 416 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| 417 | b_, input_size); |
| 418 | Eigen::array<TensorIndex, 1> output_size; |
| 419 | output_size[0] = k_; |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 420 | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> A( |
| 421 | a_, output_size); |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 422 | |
| 423 | #ifndef EIGEN_HAS_INDEX_LIST |
| 424 | Eigen::array<TensorIndex, 1> sum_along_dim; |
| 425 | sum_along_dim[0] = 1; |
| 426 | #else |
| 427 | // Take advantage of cxx11 to give the compiler information it can use to |
| 428 | // optimize the code. |
| 429 | Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; |
| 430 | #endif |
| 431 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 432 | for (int iter = 0; iter < 10; ++iter) { |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 433 | A.device(device_) = B.sum(sum_along_dim); |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 434 | } |
| 435 | #endif |
| 436 | StartBenchmarkTiming(); |
| 437 | for (int iter = 0; iter < num_iters; ++iter) { |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 438 | A.device(device_) = B.sum(sum_along_dim); |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 439 | } |
| 440 | // Record the number of FLOP executed per second (assuming one operation |
| 441 | // per value) |
| 442 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 443 | } |
| 444 | |
| 445 | // Full reduction |
| 446 | void fullReduction(int num_iters) { |
| 447 | Eigen::array<TensorIndex, 2> input_size; |
| 448 | input_size[0] = k_; |
| 449 | input_size[1] = n_; |
| 450 | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B( |
| 451 | b_, input_size); |
| 452 | Eigen::array<TensorIndex, 0> output_size; |
| 453 | TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C( |
| 454 | c_, output_size); |
| 455 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 456 | for (int iter = 0; iter < 10; ++iter) { |
| 457 | C.device(device_) = B.sum(); |
| 458 | } |
| 459 | #endif |
| 460 | StartBenchmarkTiming(); |
| 461 | for (int iter = 0; iter < num_iters; ++iter) { |
| 462 | C.device(device_) = B.sum(); |
| 463 | } |
| 464 | // Record the number of FLOP executed per second (assuming one operation |
| 465 | // per value) |
| 466 | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); |
| 467 | } |
| 468 | |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 469 | |
| 470 | |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 471 | // do a contraction which is equivalent to a matrix multiplication |
| 472 | void contraction(int num_iters) { |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 473 | contraction<static_cast<int>(Eigen::ColMajor)>(num_iters, false, false); |
| 474 | } |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 475 | |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 476 | void contractionRowMajor(int num_iters) { |
| 477 | contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, false); |
| 478 | } |
| 479 | |
| 480 | void contractionRowMajorAT(int num_iters) { |
| 481 | contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, false); |
| 482 | } |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 483 | |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 484 | void contractionRowMajorBT(int num_iters) { |
| 485 | contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, true); |
| 486 | } |
| 487 | |
| 488 | void contractionRowMajorABT(int num_iters) { |
| 489 | contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, true); |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 490 | } |
| 491 | |
| 492 | void convolution(int num_iters, int kernel_x, int kernel_y) { |
| 493 | Eigen::array<TensorIndex, 2> input_sizes; |
| 494 | input_sizes[0] = m_; |
| 495 | input_sizes[1] = n_; |
| 496 | TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); |
| 497 | Eigen::array<TensorIndex, 2> kernel_sizes; |
| 498 | kernel_sizes[0] = kernel_x; |
| 499 | kernel_sizes[1] = kernel_y; |
| 500 | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); |
| 501 | Eigen::array<TensorIndex, 2> result_sizes; |
| 502 | result_sizes[0] = m_ - kernel_x + 1; |
| 503 | result_sizes[1] = n_ - kernel_y + 1; |
| 504 | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); |
| 505 | Eigen::array<TensorIndex, 2> dims; |
| 506 | dims[0] = 0; |
| 507 | dims[1] = 1; |
| 508 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 509 | for (int iter = 0; iter < 10; ++iter) { |
| 510 | C.device(device_) = A.convolve(B, dims); |
| 511 | } |
| 512 | #endif |
| 513 | StartBenchmarkTiming(); |
| 514 | for (int iter = 0; iter < num_iters; ++iter) { |
| 515 | C.device(device_) = A.convolve(B, dims); |
| 516 | } |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 517 | // Record the number of FLOPs executed per second (kernel_size |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 518 | // multiplications and additions for each value in the resulting tensor) |
| 519 | finalizeBenchmark(static_cast<int64_t>(2) * |
| 520 | (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters); |
| 521 | } |
| 522 | |
| 523 | private: |
Rasmus Munk Larsen | 32c1f1f | 2019-12-06 11:42:25 -0800 | [diff] [blame^] | 524 | // do a contraction which is equivalent to a matrix multiplication |
| 525 | template<int Layout> |
| 526 | void contraction(int num_iters, bool trans_a, bool trans_b) { |
| 527 | Eigen::array<TensorIndex, 2> sizeA; |
| 528 | sizeA[0] = (trans_a ? k_: m_); |
| 529 | sizeA[1] = (trans_a ? m_: k_); |
| 530 | Eigen::array<TensorIndex, 2> sizeB; |
| 531 | sizeB[0] = (trans_b ? n_: k_); |
| 532 | sizeB[1] = (trans_b ? k_: n_); |
| 533 | Eigen::array<TensorIndex, 2> sizeC; |
| 534 | sizeC[0] = m_; |
| 535 | sizeC[1] = n_; |
| 536 | |
| 537 | const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> A(a_, sizeA); |
| 538 | const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> B(b_, sizeB); |
| 539 | TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> C(c_, sizeC); |
| 540 | |
| 541 | typedef typename Tensor<T, 2, Layout>::DimensionPair DimPair; |
| 542 | Eigen::array<DimPair, 1> dims; |
| 543 | TensorIndex a_contract_dim = (trans_a ? 0 : 1); |
| 544 | TensorIndex b_contract_dim = (trans_b ? 1 : 0); |
| 545 | dims[0] = DimPair(a_contract_dim, b_contract_dim); |
| 546 | #ifdef EIGEN_USE_SYCL // warmup for sycl |
| 547 | for (int iter = 0; iter < 10; ++iter) { |
| 548 | C.device(device_) = A.contract(B, dims); |
| 549 | } |
| 550 | #endif |
| 551 | StartBenchmarkTiming(); |
| 552 | for (int iter = 0; iter < num_iters; ++iter) { |
| 553 | C.device(device_) = A.contract(B, dims); |
| 554 | } |
| 555 | // Record the number of FLOP executed per second (size_ multiplications and |
| 556 | // additions for each value in the resulting tensor) |
| 557 | finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); |
| 558 | } |
| 559 | |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 560 | void initialize() { |
| 561 | a_ = (T *) device_.allocate(m_ * k_ * sizeof(T)); |
| 562 | b_ = (T *) device_.allocate(k_ * n_ * sizeof(T)); |
| 563 | c_ = (T *) device_.allocate(m_ * n_ * sizeof(T)); |
| 564 | |
| 565 | // Initialize the content of the memory pools to prevent asan from |
| 566 | // complaining. |
| 567 | device_.memset(a_, 12, m_ * k_ * sizeof(T)); |
| 568 | device_.memset(b_, 23, k_ * n_ * sizeof(T)); |
| 569 | device_.memset(c_, 31, m_ * n_ * sizeof(T)); |
| 570 | |
Googler | 45874d8 | 2019-08-21 12:06:47 -0700 | [diff] [blame] | 571 | } |
| 572 | |
| 573 | inline void finalizeBenchmark(int64_t num_items) { |
| 574 | #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) |
| 575 | if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { |
| 576 | device_.synchronize(); |
| 577 | } |
| 578 | #elif defined(EIGEN_USE_SYCL) |
| 579 | if (Eigen::internal::is_same<Device, Eigen::SyclDevice>::value) { |
| 580 | device_.synchronize(); |
| 581 | } |
| 582 | |
| 583 | #endif |
| 584 | StopBenchmarkTiming(); |
| 585 | SetBenchmarkFlopsProcessed(num_items); |
| 586 | } |
| 587 | |
| 588 | |
| 589 | TensorIndex m_; |
| 590 | TensorIndex k_; |
| 591 | TensorIndex n_; |
| 592 | T* a_; |
| 593 | T* b_; |
| 594 | T* c_; |
| 595 | Device device_; |
| 596 | }; |
| 597 | #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |