blob: 0825e156337bf7b5b4cd99250fd1db39f3200cad [file] [log] [blame]
Googler45874d82019-08-21 12:06:47 -07001#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
2#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
3
4typedef int TensorIndex;
5#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
6
7#include "unsupported/Eigen/CXX11/Tensor"
8#include "benchmark.h"
9
10#define BENCHMARK_RANGE(bench, lo, hi) \
11 BENCHMARK(bench)->Range(lo, hi)
12
13using Eigen::Tensor;
14using Eigen::TensorMap;
15
16// TODO(bsteiner): also templatize on the input type since we have users
17// for int8 as well as floats.
18template <typename Device, typename T> class BenchmarkSuite {
19 public:
20 BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
21 : m_(m), k_(k), n_(n), device_(device) {
22 initialize();
23 }
24
25 BenchmarkSuite(const Device& device, size_t m)
26 : m_(m), k_(m), n_(m), device_(device) {
27 initialize();
28 }
29
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -080030 BenchmarkSuite(const Device& device, size_t m, size_t k)
31 : m_(1), k_(k), n_(m), device_(device) {
32 initialize();
33 }
34
Googler45874d82019-08-21 12:06:47 -070035 ~BenchmarkSuite() {
36 device_.deallocate(a_);
37 device_.deallocate(b_);
38 device_.deallocate(c_);
39 }
40
41 void memcpy(int num_iters) {
42 eigen_assert(m_ == k_ && k_ == n_);
43#ifdef EIGEN_USE_SYCL // warmup for sycl
44 for (int iter = 0; iter < 10; ++iter) {
45 device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
46 }
47#endif
48 StartBenchmarkTiming();
49 for (int iter = 0; iter < num_iters; ++iter) {
50 device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
51 }
52 // Record the number of values copied per second
53 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
54 }
55
56 void typeCasting(int num_iters) {
57 eigen_assert(m_ == n_);
58 Eigen::array<TensorIndex, 2> sizes;
59 if (sizeof(T) >= sizeof(int)) {
60 sizes[0] = m_;
61 sizes[1] = k_;
62 } else {
63 sizes[0] = m_ * sizeof(T) / sizeof(int);
64 sizes[1] = k_ * sizeof(T) / sizeof(int);
65 }
66 const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes);
67 TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes);
68#ifdef EIGEN_USE_SYCL // warmup for sycl
69 for (int iter = 0; iter < 10; ++iter) {
70 B.device(device_) = A.template cast<T>();
71 }
72#endif
73 StartBenchmarkTiming();
74 for (int iter = 0; iter < num_iters; ++iter) {
75 B.device(device_) = A.template cast<T>();
76 }
77 // Record the number of values copied per second
78 finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
79 }
80
81 void random(int num_iters) {
82 eigen_assert(m_ == k_ && k_ == n_);
83 Eigen::array<TensorIndex, 2> sizes;
84 sizes[0] = m_;
85 sizes[1] = m_;
86 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -080087#ifdef EIGEN_USE_SYCL // warmup for sycl
88 for (int iter = 0; iter < 10; ++iter) {
89 C.device(device_) = C.random();
90 }
91#endif
Googler45874d82019-08-21 12:06:47 -070092 StartBenchmarkTiming();
93 for (int iter = 0; iter < num_iters; ++iter) {
94 C.device(device_) = C.random();
95 }
96 // Record the number of random numbers generated per second
97 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
98 }
99
100 void slicing(int num_iters) {
101 eigen_assert(m_ == k_ && k_ == n_);
102 Eigen::array<TensorIndex, 2> sizes;
103 sizes[0] = m_;
104 sizes[1] = m_;
105 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
106 const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
107 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
108
109 const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2);
110 const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0);
111 const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2);
112 const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0);
113 const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2);
114#ifdef EIGEN_USE_SYCL // warmup for sycl
115 for (int iter = 0; iter < 10; ++iter) {
116 C.slice(first_quadrant, quarter_sizes).device(device_) =
117 A.slice(first_quadrant, quarter_sizes);
118 C.slice(second_quadrant, quarter_sizes).device(device_) =
119 B.slice(second_quadrant, quarter_sizes);
120 C.slice(third_quadrant, quarter_sizes).device(device_) =
121 A.slice(third_quadrant, quarter_sizes);
122 C.slice(fourth_quadrant, quarter_sizes).device(device_) =
123 B.slice(fourth_quadrant, quarter_sizes);
124 }
125#endif
126 StartBenchmarkTiming();
127 for (int iter = 0; iter < num_iters; ++iter) {
128 C.slice(first_quadrant, quarter_sizes).device(device_) =
129 A.slice(first_quadrant, quarter_sizes);
130 C.slice(second_quadrant, quarter_sizes).device(device_) =
131 B.slice(second_quadrant, quarter_sizes);
132 C.slice(third_quadrant, quarter_sizes).device(device_) =
133 A.slice(third_quadrant, quarter_sizes);
134 C.slice(fourth_quadrant, quarter_sizes).device(device_) =
135 B.slice(fourth_quadrant, quarter_sizes);
136 }
137 // Record the number of values copied from the rhs slice to the lhs slice
138 // each second
139 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
140 }
141
142 void rowChip(int num_iters) {
143 Eigen::array<TensorIndex, 2> input_size;
144 input_size[0] = k_;
145 input_size[1] = n_;
146 const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
147 Eigen::array<TensorIndex, 1> output_size;
148 output_size[0] = n_;
149 TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
150#ifdef EIGEN_USE_SYCL // warmup for sycl
151 for (int iter = 0; iter < 10; ++iter) {
152 C.device(device_) = B.chip(iter % k_, 0);
153 }
154#endif
155 StartBenchmarkTiming();
156 for (int iter = 0; iter < num_iters; ++iter) {
157 C.device(device_) = B.chip(iter % k_, 0);
158 }
159 // Record the number of values copied from the rhs chip to the lhs.
160 finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
161 }
162
163 void colChip(int num_iters) {
164 Eigen::array<TensorIndex, 2> input_size;
165 input_size[0] = k_;
166 input_size[1] = n_;
167 const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
168 Eigen::array<TensorIndex, 1> output_size;
169 output_size[0] = n_;
170 TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
171#ifdef EIGEN_USE_SYCL // warmup for sycl
172 for (int iter = 0; iter < 10; ++iter) {
173 C.device(device_) = B.chip(iter % n_, 1);
174 }
175#endif
176 StartBenchmarkTiming();
177 for (int iter = 0; iter < num_iters; ++iter) {
178 C.device(device_) = B.chip(iter % n_, 1);
179 }
180 // Record the number of values copied from the rhs chip to the lhs.
181 finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
182 }
183
184 void shuffling(int num_iters) {
185 eigen_assert(m_ == n_);
186 Eigen::array<TensorIndex, 2> size_a;
187 size_a[0] = m_;
188 size_a[1] = k_;
189 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
190 Eigen::array<TensorIndex, 2> size_b;
191 size_b[0] = k_;
192 size_b[1] = m_;
193 TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
194
195 Eigen::array<int, 2> shuffle;
196 shuffle[0] = 1;
197 shuffle[1] = 0;
198#ifdef EIGEN_USE_SYCL // warmup for sycl
199 for (int iter = 0; iter < 10; ++iter) {
200 B.device(device_) = A.shuffle(shuffle);
201 }
202#endif
203 StartBenchmarkTiming();
204 for (int iter = 0; iter < num_iters; ++iter) {
205 B.device(device_) = A.shuffle(shuffle);
206 }
207 // Record the number of values shuffled from A and copied to B each second
208 finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
209 }
210
211 void padding(int num_iters) {
212 eigen_assert(m_ == k_);
213 Eigen::array<TensorIndex, 2> size_a;
214 size_a[0] = m_;
215 size_a[1] = k_-3;
216 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
217 Eigen::array<TensorIndex, 2> size_b;
218 size_b[0] = k_;
219 size_b[1] = m_;
220 TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
221
222#if defined(EIGEN_HAS_INDEX_LIST)
223 Eigen::IndexPairList<Eigen::type2indexpair<0, 0>,
224 Eigen::type2indexpair<2, 1> > paddings;
225#else
226 Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
227 paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
228 paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
229#endif
230#ifdef EIGEN_USE_SYCL // warmup for sycl
231 for (int iter = 0; iter < 10; ++iter) {
232 B.device(device_) = A.pad(paddings);
233 }
234#endif
235 StartBenchmarkTiming();
236 for (int iter = 0; iter < num_iters; ++iter) {
237 B.device(device_) = A.pad(paddings);
238 }
239 // Record the number of values copied from the padded tensor A each second
240 finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
241 }
242
243 void striding(int num_iters) {
244 eigen_assert(m_ == k_);
245 Eigen::array<TensorIndex, 2> size_a;
246 size_a[0] = m_;
247 size_a[1] = k_;
248 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
249 Eigen::array<TensorIndex, 2> size_b;
250 size_b[0] = m_;
251 size_b[1] = k_/2;
252 TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
253
254#ifndef EIGEN_HAS_INDEX_LIST
255 Eigen::array<TensorIndex, 2> strides;
256 strides[0] = 1;
257 strides[1] = 2;
258#else
259 // Take advantage of cxx11 to give the compiler information it can use to
260 // optimize the code.
261 Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides;
262#endif
263
264#ifdef EIGEN_USE_SYCL // warmup for sycl
265 for (int iter = 0; iter < 10; ++iter) {
266 B.device(device_) = A.stride(strides);
267 }
268#endif
269 StartBenchmarkTiming();
270 for (int iter = 0; iter < num_iters; ++iter) {
271 B.device(device_) = A.stride(strides);
272 }
273 // Record the number of values copied from the padded tensor A each second
274 finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
275 }
276
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800277
Googler45874d82019-08-21 12:06:47 -0700278 void broadcasting(int num_iters) {
279 Eigen::array<TensorIndex, 2> size_a;
280 size_a[0] = m_;
281 size_a[1] = 1;
282 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
283 Eigen::array<TensorIndex, 2> size_c;
284 size_c[0] = m_;
285 size_c[1] = n_;
286 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c);
287
288#ifndef EIGEN_HAS_INDEX_LIST
289 Eigen::array<int, 2> broadcast;
290 broadcast[0] = 1;
291 broadcast[1] = n_;
292#else
293 // Take advantage of cxx11 to give the compiler information it can use to
294 // optimize the code.
295 Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
296 broadcast.set(1, n_);
297#endif
298
299#ifdef EIGEN_USE_SYCL // warmup for sycl
300 for (int iter = 0; iter < 10; ++iter) {
301 C.device(device_) = A.broadcast(broadcast);
302 }
303#endif
304 StartBenchmarkTiming();
305 for (int iter = 0; iter < num_iters; ++iter) {
306 C.device(device_) = A.broadcast(broadcast);
307 }
308 // Record the number of values broadcasted from A and copied to C each second
309 finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters);
310 }
311
312 void coeffWiseOp(int num_iters) {
313 eigen_assert(m_ == k_ && k_ == n_);
314 Eigen::array<TensorIndex, 2> sizes;
315 sizes[0] = m_;
316 sizes[1] = m_;
317 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
318 const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
319 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
320#ifdef EIGEN_USE_SYCL // warmup for sycl
321 for (int iter = 0; iter < 10; ++iter) {
322 C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7));
323 }
324#endif
325 StartBenchmarkTiming();
326 for (int iter = 0; iter < num_iters; ++iter) {
327 C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7));
328 }
329 // Record the number of FLOP executed per second (2 multiplications and
330 // 1 addition per value)
331 finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters);
332 }
333
334 void algebraicFunc(int num_iters) {
335 eigen_assert(m_ == k_ && k_ == n_);
336 Eigen::array<TensorIndex, 2> sizes;
337 sizes[0] = m_;
338 sizes[1] = m_;
339 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
340 const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
341 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
342
343#ifdef EIGEN_USE_SYCL // warmup for sycl
344for (int iter = 0; iter < 10; ++iter) {
345 C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
346}
347#endif
348 StartBenchmarkTiming();
349 for (int iter = 0; iter < num_iters; ++iter) {
350 C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
351 }
352 // Record the number of FLOP executed per second (assuming one operation
353 // per value)
354 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
355 }
356
357 void transcendentalFunc(int num_iters) {
358 eigen_assert(m_ == k_ && k_ == n_);
359 Eigen::array<TensorIndex, 2> sizes;
360 sizes[0] = m_;
361 sizes[1] = m_;
362 const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
363 const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
364 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
365#ifdef EIGEN_USE_SYCL // warmup for sycl
366 for (int iter = 0; iter < 10; ++iter) {
367 C.device(device_) = A.exp() + B.log();
368 }
369#endif
370 StartBenchmarkTiming();
371 for (int iter = 0; iter < num_iters; ++iter) {
372 C.device(device_) = A.exp() + B.log();
373 }
374 // Record the number of FLOP executed per second (assuming one operation
375 // per value)
376 finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
377 }
378
379 // Row reduction
380 void rowReduction(int num_iters) {
381 Eigen::array<TensorIndex, 2> input_size;
382 input_size[0] = k_;
383 input_size[1] = n_;
384 const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size);
385 Eigen::array<TensorIndex, 1> output_size;
386 output_size[0] = n_;
387 TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
388
389#ifndef EIGEN_HAS_INDEX_LIST
390 Eigen::array<TensorIndex, 1> sum_along_dim;
391 sum_along_dim[0] = 0;
392#else
393 // Take advantage of cxx11 to give the compiler information it can use to
394 // optimize the code.
395 Eigen::IndexList<Eigen::type2index<0>> sum_along_dim;
396#endif
397#ifdef EIGEN_USE_SYCL // warmup for sycl
398 for (int iter = 0; iter < 10; ++iter) {
399 C.device(device_) = B.sum(sum_along_dim);
400 }
401#endif
402 StartBenchmarkTiming();
403 for (int iter = 0; iter < num_iters; ++iter) {
404 C.device(device_) = B.sum(sum_along_dim);
405 }
406 // Record the number of FLOP executed per second (assuming one operation
407 // per value)
408 finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
409 }
410
411 // Column reduction
412 void colReduction(int num_iters) {
413 Eigen::array<TensorIndex, 2> input_size;
414 input_size[0] = k_;
415 input_size[1] = n_;
416 const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
417 b_, input_size);
418 Eigen::array<TensorIndex, 1> output_size;
419 output_size[0] = k_;
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800420 TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> A(
421 a_, output_size);
Googler45874d82019-08-21 12:06:47 -0700422
423#ifndef EIGEN_HAS_INDEX_LIST
424 Eigen::array<TensorIndex, 1> sum_along_dim;
425 sum_along_dim[0] = 1;
426#else
427 // Take advantage of cxx11 to give the compiler information it can use to
428 // optimize the code.
429 Eigen::IndexList<Eigen::type2index<1>> sum_along_dim;
430#endif
431#ifdef EIGEN_USE_SYCL // warmup for sycl
432 for (int iter = 0; iter < 10; ++iter) {
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800433 A.device(device_) = B.sum(sum_along_dim);
Googler45874d82019-08-21 12:06:47 -0700434 }
435#endif
436 StartBenchmarkTiming();
437 for (int iter = 0; iter < num_iters; ++iter) {
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800438 A.device(device_) = B.sum(sum_along_dim);
Googler45874d82019-08-21 12:06:47 -0700439 }
440 // Record the number of FLOP executed per second (assuming one operation
441 // per value)
442 finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
443 }
444
445 // Full reduction
446 void fullReduction(int num_iters) {
447 Eigen::array<TensorIndex, 2> input_size;
448 input_size[0] = k_;
449 input_size[1] = n_;
450 const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(
451 b_, input_size);
452 Eigen::array<TensorIndex, 0> output_size;
453 TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C(
454 c_, output_size);
455#ifdef EIGEN_USE_SYCL // warmup for sycl
456 for (int iter = 0; iter < 10; ++iter) {
457 C.device(device_) = B.sum();
458 }
459#endif
460 StartBenchmarkTiming();
461 for (int iter = 0; iter < num_iters; ++iter) {
462 C.device(device_) = B.sum();
463 }
464 // Record the number of FLOP executed per second (assuming one operation
465 // per value)
466 finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
467 }
468
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800469
470
Googler45874d82019-08-21 12:06:47 -0700471 // do a contraction which is equivalent to a matrix multiplication
472 void contraction(int num_iters) {
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800473 contraction<static_cast<int>(Eigen::ColMajor)>(num_iters, false, false);
474 }
Googler45874d82019-08-21 12:06:47 -0700475
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800476 void contractionRowMajor(int num_iters) {
477 contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, false);
478 }
479
480 void contractionRowMajorAT(int num_iters) {
481 contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, false);
482 }
Googler45874d82019-08-21 12:06:47 -0700483
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800484 void contractionRowMajorBT(int num_iters) {
485 contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, true);
486 }
487
488 void contractionRowMajorABT(int num_iters) {
489 contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, true);
Googler45874d82019-08-21 12:06:47 -0700490 }
491
492 void convolution(int num_iters, int kernel_x, int kernel_y) {
493 Eigen::array<TensorIndex, 2> input_sizes;
494 input_sizes[0] = m_;
495 input_sizes[1] = n_;
496 TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes);
497 Eigen::array<TensorIndex, 2> kernel_sizes;
498 kernel_sizes[0] = kernel_x;
499 kernel_sizes[1] = kernel_y;
500 TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes);
501 Eigen::array<TensorIndex, 2> result_sizes;
502 result_sizes[0] = m_ - kernel_x + 1;
503 result_sizes[1] = n_ - kernel_y + 1;
504 TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes);
505 Eigen::array<TensorIndex, 2> dims;
506 dims[0] = 0;
507 dims[1] = 1;
508#ifdef EIGEN_USE_SYCL // warmup for sycl
509 for (int iter = 0; iter < 10; ++iter) {
510 C.device(device_) = A.convolve(B, dims);
511 }
512#endif
513 StartBenchmarkTiming();
514 for (int iter = 0; iter < num_iters; ++iter) {
515 C.device(device_) = A.convolve(B, dims);
516 }
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800517 // Record the number of FLOPs executed per second (kernel_size
Googler45874d82019-08-21 12:06:47 -0700518 // multiplications and additions for each value in the resulting tensor)
519 finalizeBenchmark(static_cast<int64_t>(2) *
520 (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters);
521 }
522
523 private:
Rasmus Munk Larsen32c1f1f2019-12-06 11:42:25 -0800524 // do a contraction which is equivalent to a matrix multiplication
525 template<int Layout>
526 void contraction(int num_iters, bool trans_a, bool trans_b) {
527 Eigen::array<TensorIndex, 2> sizeA;
528 sizeA[0] = (trans_a ? k_: m_);
529 sizeA[1] = (trans_a ? m_: k_);
530 Eigen::array<TensorIndex, 2> sizeB;
531 sizeB[0] = (trans_b ? n_: k_);
532 sizeB[1] = (trans_b ? k_: n_);
533 Eigen::array<TensorIndex, 2> sizeC;
534 sizeC[0] = m_;
535 sizeC[1] = n_;
536
537 const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> A(a_, sizeA);
538 const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> B(b_, sizeB);
539 TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> C(c_, sizeC);
540
541 typedef typename Tensor<T, 2, Layout>::DimensionPair DimPair;
542 Eigen::array<DimPair, 1> dims;
543 TensorIndex a_contract_dim = (trans_a ? 0 : 1);
544 TensorIndex b_contract_dim = (trans_b ? 1 : 0);
545 dims[0] = DimPair(a_contract_dim, b_contract_dim);
546#ifdef EIGEN_USE_SYCL // warmup for sycl
547 for (int iter = 0; iter < 10; ++iter) {
548 C.device(device_) = A.contract(B, dims);
549 }
550#endif
551 StartBenchmarkTiming();
552 for (int iter = 0; iter < num_iters; ++iter) {
553 C.device(device_) = A.contract(B, dims);
554 }
555 // Record the number of FLOP executed per second (size_ multiplications and
556 // additions for each value in the resulting tensor)
557 finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters);
558 }
559
Googler45874d82019-08-21 12:06:47 -0700560 void initialize() {
561 a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
562 b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
563 c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
564
565 // Initialize the content of the memory pools to prevent asan from
566 // complaining.
567 device_.memset(a_, 12, m_ * k_ * sizeof(T));
568 device_.memset(b_, 23, k_ * n_ * sizeof(T));
569 device_.memset(c_, 31, m_ * n_ * sizeof(T));
570
Googler45874d82019-08-21 12:06:47 -0700571 }
572
573 inline void finalizeBenchmark(int64_t num_items) {
574#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
575 if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
576 device_.synchronize();
577 }
578#elif defined(EIGEN_USE_SYCL)
579 if (Eigen::internal::is_same<Device, Eigen::SyclDevice>::value) {
580 device_.synchronize();
581 }
582
583#endif
584 StopBenchmarkTiming();
585 SetBenchmarkFlopsProcessed(num_items);
586 }
587
588
589 TensorIndex m_;
590 TensorIndex k_;
591 TensorIndex n_;
592 T* a_;
593 T* b_;
594 T* c_;
595 Device device_;
596};
597#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_