C. Antonio Sanchez | 56634d8 | 2022-07-07 08:21:18 -0700 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <unsupported/Eigen/FFT> |
| 12 | |
| 13 | template <typename T> |
| 14 | inline std::complex<T> RandomCpx() { |
| 15 | return std::complex<T>((T)(rand() / (T)RAND_MAX - .5), (T)(rand() / (T)RAND_MAX - .5)); |
| 16 | } |
| 17 | |
| 18 | using namespace std; |
| 19 | using namespace Eigen; |
| 20 | |
| 21 | template <typename T> |
| 22 | inline complex<long double> promote(complex<T> x) { |
| 23 | return complex<long double>((long double)x.real(), (long double)x.imag()); |
| 24 | } |
| 25 | |
| 26 | inline complex<long double> promote(float x) { return complex<long double>((long double)x); } |
| 27 | inline complex<long double> promote(double x) { return complex<long double>((long double)x); } |
| 28 | inline complex<long double> promote(long double x) { return complex<long double>((long double)x); } |
| 29 | |
| 30 | template <typename VT1, typename VT2> |
| 31 | long double fft_rmse(const VT1& fftbuf, const VT2& timebuf) { |
| 32 | long double totalpower = 0; |
| 33 | long double difpower = 0; |
| 34 | long double pi = acos((long double)-1); |
| 35 | for (size_t k0 = 0; k0 < (size_t)fftbuf.size(); ++k0) { |
| 36 | complex<long double> acc = 0; |
| 37 | long double phinc = (long double)(-2.) * k0 * pi / timebuf.size(); |
| 38 | for (size_t k1 = 0; k1 < (size_t)timebuf.size(); ++k1) { |
| 39 | acc += promote(timebuf[k1]) * exp(complex<long double>(0, k1 * phinc)); |
| 40 | } |
| 41 | totalpower += numext::abs2(acc); |
| 42 | complex<long double> x = promote(fftbuf[k0]); |
| 43 | complex<long double> dif = acc - x; |
| 44 | difpower += numext::abs2(dif); |
| 45 | // cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl; |
| 46 | } |
| 47 | // cerr << "rmse:" << sqrt(difpower/totalpower) << endl; |
| 48 | return sqrt(difpower / totalpower); |
| 49 | } |
| 50 | |
| 51 | template <typename VT1, typename VT2> |
| 52 | long double dif_rmse(const VT1 buf1, const VT2 buf2) { |
| 53 | long double totalpower = 0; |
| 54 | long double difpower = 0; |
| 55 | size_t n = (min)(buf1.size(), buf2.size()); |
| 56 | for (size_t k = 0; k < n; ++k) { |
| 57 | totalpower += (long double)((numext::abs2(buf1[k]) + numext::abs2(buf2[k])) / 2); |
| 58 | difpower += (long double)(numext::abs2(buf1[k] - buf2[k])); |
| 59 | } |
| 60 | return sqrt(difpower / totalpower); |
| 61 | } |
| 62 | |
| 63 | enum { StdVectorContainer, EigenVectorContainer }; |
| 64 | |
| 65 | template <int Container, typename Scalar> |
| 66 | struct VectorType; |
| 67 | |
| 68 | template <typename Scalar> |
| 69 | struct VectorType<StdVectorContainer, Scalar> { |
| 70 | typedef vector<Scalar> type; |
| 71 | }; |
| 72 | |
| 73 | template <typename Scalar> |
| 74 | struct VectorType<EigenVectorContainer, Scalar> { |
| 75 | typedef Matrix<Scalar, Dynamic, 1> type; |
| 76 | }; |
| 77 | |
| 78 | template <int Container, typename T> |
| 79 | void test_scalar_generic(int nfft) { |
| 80 | typedef typename FFT<T>::Complex Complex; |
| 81 | typedef typename FFT<T>::Scalar Scalar; |
| 82 | typedef typename VectorType<Container, Scalar>::type ScalarVector; |
| 83 | typedef typename VectorType<Container, Complex>::type ComplexVector; |
| 84 | |
| 85 | FFT<T> fft; |
| 86 | ScalarVector tbuf(nfft); |
| 87 | ComplexVector freqBuf; |
| 88 | for (int k = 0; k < nfft; ++k) tbuf[k] = (T)(rand() / (double)RAND_MAX - .5); |
| 89 | |
| 90 | // make sure it DOESN'T give the right full spectrum answer |
| 91 | // if we've asked for half-spectrum |
| 92 | fft.SetFlag(fft.HalfSpectrum); |
| 93 | fft.fwd(freqBuf, tbuf); |
| 94 | VERIFY((size_t)freqBuf.size() == (size_t)((nfft >> 1) + 1)); |
| 95 | VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check |
| 96 | |
| 97 | fft.ClearFlag(fft.HalfSpectrum); |
| 98 | fft.fwd(freqBuf, tbuf); |
| 99 | VERIFY((size_t)freqBuf.size() == (size_t)nfft); |
| 100 | VERIFY(T(fft_rmse(freqBuf, tbuf)) < test_precision<T>()); // gross check |
| 101 | |
| 102 | if (nfft & 1) return; // odd FFTs get the wrong size inverse FFT |
| 103 | |
| 104 | ScalarVector tbuf2; |
| 105 | fft.inv(tbuf2, freqBuf); |
| 106 | VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check |
| 107 | |
| 108 | // verify that the Unscaled flag takes effect |
| 109 | ScalarVector tbuf3; |
| 110 | fft.SetFlag(fft.Unscaled); |
| 111 | |
| 112 | fft.inv(tbuf3, freqBuf); |
| 113 | |
| 114 | for (int k = 0; k < nfft; ++k) tbuf3[k] *= T(1. / nfft); |
| 115 | |
| 116 | // for (size_t i=0;i<(size_t) tbuf.size();++i) |
| 117 | // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - |
| 118 | // tbuf[i] ) << endl; |
| 119 | |
| 120 | VERIFY(T(dif_rmse(tbuf, tbuf3)) < test_precision<T>()); // gross check |
| 121 | |
| 122 | // verify that ClearFlag works |
| 123 | fft.ClearFlag(fft.Unscaled); |
| 124 | fft.inv(tbuf2, freqBuf); |
| 125 | VERIFY(T(dif_rmse(tbuf, tbuf2)) < test_precision<T>()); // gross check |
| 126 | } |
| 127 | |
| 128 | template <typename T> |
| 129 | void test_scalar(int nfft) { |
| 130 | test_scalar_generic<StdVectorContainer, T>(nfft); |
| 131 | // test_scalar_generic<EigenVectorContainer,T>(nfft); |
| 132 | } |
| 133 | |
| 134 | template <int Container, typename T> |
| 135 | void test_complex_generic(int nfft) { |
| 136 | typedef typename FFT<T>::Complex Complex; |
| 137 | typedef typename VectorType<Container, Complex>::type ComplexVector; |
| 138 | |
| 139 | FFT<T> fft; |
| 140 | |
| 141 | ComplexVector inbuf(nfft); |
| 142 | ComplexVector outbuf; |
| 143 | ComplexVector buf3; |
| 144 | for (int k = 0; k < nfft; ++k) |
| 145 | inbuf[k] = Complex((T)(rand() / (double)RAND_MAX - .5), (T)(rand() / (double)RAND_MAX - .5)); |
| 146 | fft.fwd(outbuf, inbuf); |
| 147 | |
| 148 | VERIFY(T(fft_rmse(outbuf, inbuf)) < test_precision<T>()); // gross check |
| 149 | fft.inv(buf3, outbuf); |
| 150 | |
| 151 | VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check |
| 152 | |
| 153 | // verify that the Unscaled flag takes effect |
| 154 | ComplexVector buf4; |
| 155 | fft.SetFlag(fft.Unscaled); |
| 156 | fft.inv(buf4, outbuf); |
| 157 | for (int k = 0; k < nfft; ++k) buf4[k] *= T(1. / nfft); |
| 158 | VERIFY(T(dif_rmse(inbuf, buf4)) < test_precision<T>()); // gross check |
| 159 | |
| 160 | // verify that ClearFlag works |
| 161 | fft.ClearFlag(fft.Unscaled); |
| 162 | fft.inv(buf3, outbuf); |
| 163 | VERIFY(T(dif_rmse(inbuf, buf3)) < test_precision<T>()); // gross check |
| 164 | } |
| 165 | |
| 166 | template <typename T> |
| 167 | void test_complex(int nfft) { |
| 168 | test_complex_generic<StdVectorContainer, T>(nfft); |
| 169 | test_complex_generic<EigenVectorContainer, T>(nfft); |
| 170 | } |
| 171 | |
| 172 | template <typename T, int nrows, int ncols> |
| 173 | void test_complex2d() { |
| 174 | typedef typename Eigen::FFT<T>::Complex Complex; |
| 175 | FFT<T> fft; |
| 176 | Eigen::Matrix<Complex, nrows, ncols> src, src2, dst, dst2; |
| 177 | |
| 178 | src = Eigen::Matrix<Complex, nrows, ncols>::Random(); |
| 179 | // src = Eigen::Matrix<Complex,nrows,ncols>::Identity(); |
| 180 | |
| 181 | for (int k = 0; k < ncols; k++) { |
| 182 | Eigen::Matrix<Complex, nrows, 1> tmpOut; |
| 183 | fft.fwd(tmpOut, src.col(k)); |
| 184 | dst2.col(k) = tmpOut; |
| 185 | } |
| 186 | |
| 187 | for (int k = 0; k < nrows; k++) { |
| 188 | Eigen::Matrix<Complex, 1, ncols> tmpOut; |
| 189 | fft.fwd(tmpOut, dst2.row(k)); |
| 190 | dst2.row(k) = tmpOut; |
| 191 | } |
| 192 | |
| 193 | fft.fwd2(dst.data(), src.data(), ncols, nrows); |
| 194 | fft.inv2(src2.data(), dst.data(), ncols, nrows); |
| 195 | VERIFY((src - src2).norm() < test_precision<T>()); |
| 196 | VERIFY((dst - dst2).norm() < test_precision<T>()); |
| 197 | } |
| 198 | |
| 199 | inline void test_return_by_value(int len) { |
| 200 | VectorXf in; |
| 201 | VectorXf in1; |
| 202 | in.setRandom(len); |
| 203 | VectorXcf out1, out2; |
| 204 | FFT<float> fft; |
| 205 | |
| 206 | fft.SetFlag(fft.HalfSpectrum); |
| 207 | |
| 208 | fft.fwd(out1, in); |
| 209 | out2 = fft.fwd(in); |
| 210 | VERIFY((out1 - out2).norm() < test_precision<float>()); |
| 211 | in1 = fft.inv(out1); |
| 212 | VERIFY((in1 - in).norm() < test_precision<float>()); |
| 213 | } |
| 214 | |
| 215 | EIGEN_DECLARE_TEST(FFTW) { |
| 216 | CALL_SUBTEST(test_return_by_value(32)); |
| 217 | CALL_SUBTEST(test_complex<float>(32)); |
| 218 | CALL_SUBTEST(test_complex<double>(32)); |
| 219 | CALL_SUBTEST(test_complex<float>(256)); |
| 220 | CALL_SUBTEST(test_complex<double>(256)); |
| 221 | CALL_SUBTEST(test_complex<float>(3 * 8)); |
| 222 | CALL_SUBTEST(test_complex<double>(3 * 8)); |
| 223 | CALL_SUBTEST(test_complex<float>(5 * 32)); |
| 224 | CALL_SUBTEST(test_complex<double>(5 * 32)); |
| 225 | CALL_SUBTEST(test_complex<float>(2 * 3 * 4)); |
| 226 | CALL_SUBTEST(test_complex<double>(2 * 3 * 4)); |
| 227 | CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5)); |
| 228 | CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5)); |
| 229 | CALL_SUBTEST(test_complex<float>(2 * 3 * 4 * 5 * 7)); |
| 230 | CALL_SUBTEST(test_complex<double>(2 * 3 * 4 * 5 * 7)); |
| 231 | |
| 232 | CALL_SUBTEST(test_scalar<float>(32)); |
| 233 | CALL_SUBTEST(test_scalar<double>(32)); |
| 234 | CALL_SUBTEST(test_scalar<float>(45)); |
| 235 | CALL_SUBTEST(test_scalar<double>(45)); |
| 236 | CALL_SUBTEST(test_scalar<float>(50)); |
| 237 | CALL_SUBTEST(test_scalar<double>(50)); |
| 238 | CALL_SUBTEST(test_scalar<float>(256)); |
| 239 | CALL_SUBTEST(test_scalar<double>(256)); |
| 240 | CALL_SUBTEST(test_scalar<float>(2 * 3 * 4 * 5 * 7)); |
| 241 | CALL_SUBTEST(test_scalar<double>(2 * 3 * 4 * 5 * 7)); |
| 242 | |
| 243 | #if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT |
| 244 | CALL_SUBTEST(test_complex<long double>(32)); |
| 245 | CALL_SUBTEST(test_complex<long double>(256)); |
| 246 | CALL_SUBTEST(test_complex<long double>(3 * 8)); |
| 247 | CALL_SUBTEST(test_complex<long double>(5 * 32)); |
| 248 | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4)); |
| 249 | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5)); |
| 250 | CALL_SUBTEST(test_complex<long double>(2 * 3 * 4 * 5 * 7)); |
| 251 | |
| 252 | CALL_SUBTEST(test_scalar<long double>(32)); |
| 253 | CALL_SUBTEST(test_scalar<long double>(45)); |
| 254 | CALL_SUBTEST(test_scalar<long double>(50)); |
| 255 | CALL_SUBTEST(test_scalar<long double>(256)); |
| 256 | CALL_SUBTEST(test_scalar<long double>(2 * 3 * 4 * 5 * 7)); |
| 257 | |
| 258 | CALL_SUBTEST((test_complex2d<long double, 2 * 3 * 4, 2 * 3 * 4>())); |
| 259 | CALL_SUBTEST((test_complex2d<long double, 3 * 4 * 5, 3 * 4 * 5>())); |
| 260 | CALL_SUBTEST((test_complex2d<long double, 24, 60>())); |
| 261 | CALL_SUBTEST((test_complex2d<long double, 60, 24>())); |
| 262 | // fail to build since Eigen limit the stack allocation size,too big here. |
| 263 | // CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) ); |
| 264 | #endif |
| 265 | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| 266 | CALL_SUBTEST((test_complex2d<float, 24, 24>())); |
| 267 | CALL_SUBTEST((test_complex2d<float, 60, 60>())); |
| 268 | CALL_SUBTEST((test_complex2d<float, 24, 60>())); |
| 269 | CALL_SUBTEST((test_complex2d<float, 60, 24>())); |
| 270 | #endif |
| 271 | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| 272 | CALL_SUBTEST((test_complex2d<double, 24, 24>())); |
| 273 | CALL_SUBTEST((test_complex2d<double, 60, 60>())); |
| 274 | CALL_SUBTEST((test_complex2d<double, 24, 60>())); |
| 275 | CALL_SUBTEST((test_complex2d<double, 60, 24>())); |
| 276 | #endif |
| 277 | } |