blob: 8938904ed82cb7b8571fa95957207d20846e4fb2 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UNARY_FUNCTORS_H
#define EIGEN_UNARY_FUNCTORS_H
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct scalar_opposite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasNegate };
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs
*/
template<typename Scalar> struct scalar_abs_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasAbs
};
};
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs2
*/
template<typename Scalar> struct scalar_abs2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
template<typename Scalar> struct scalar_conjugate_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return Eigen::numext::conj(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
PacketAccess = packet_traits<Scalar>::HasConj
};
};
/** \internal
* \brief Template functor to cast a scalar to another type
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename Scalar, typename NewType>
struct scalar_cast_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef NewType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<Scalar>::AddCost + NumTraits<NewType>::AddCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct scalar_exp_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template <typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasExp,
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
Cost =
(sizeof(Scalar) == 4
// float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (14 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<packet_traits<Scalar>::HasDiv>::Cost)),
#else
Cost =
(sizeof(Scalar) == 4
// float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (23 * NumTraits<Scalar>::AddCost +
12 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<packet_traits<Scalar>::HasDiv>::Cost))
#endif
};
};
/** \internal
*
* \brief Template functor to compute the exponential of a scalar - 1.
*
* \sa class CwiseUnaryOp, ArrayBase::expm1()
*/
template <typename Scalar> struct scalar_expm1_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_expm1_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const {
return numext::expm1(a);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const {
return internal::pexpm1(a);
}
};
template <typename Scalar>
struct functor_traits<scalar_expm1_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasExpm1,
Cost = functor_traits<scalar_exp_op<Scalar> >::Cost // TODO measure cost of expm1.
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, ArrayBase::log()
*/
template<typename Scalar> struct scalar_log_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog,
Cost =
(PacketAccess
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
#else
// 8 pmadd, 6 pmul, 8 padd/psub, 20 other
? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
#endif
// Measured cost of std::log.
: sizeof(Scalar)==4 ? 40 : 85)
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of 1 plus a scalar value
*
* \sa class CwiseUnaryOp, ArrayBase::log1p()
*/
template <typename Scalar> struct scalar_log1p_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const {
return numext::log1p(a);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const {
return internal::plog1p(a);
}
};
template <typename Scalar>
struct functor_traits<scalar_log1p_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog1p,
Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of
// log1p
};
};
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template <typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> > {
enum {
#if EIGEN_FAST_MATH
// The following numbers are based on the AVX implementation.
Cost = (sizeof(Scalar) == 8 ? 28
// 4 pmul, 1 pmadd, 3 other
: (3 * NumTraits<Scalar>::AddCost +
5 * NumTraits<Scalar>::MulCost)),
#else
// The following numbers are based on min VSQRT throughput on Haswell.
Cost = (sizeof(Scalar) == 8 ? 28 : 14),
#endif
PacketAccess = packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the reciprocal square root of a scalar
* \sa class CwiseUnaryOp, Cwise::rsqrt()
*/
template<typename Scalar> struct scalar_rsqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
};
template<typename Scalar>
struct functor_traits<scalar_rsqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRsqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cos()
*/
template<typename Scalar> struct scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sin()
*/
template<typename Scalar> struct scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to compute the tan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tan()
*/
template<typename Scalar> struct scalar_tan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasTan
};
};
/** \internal
* \brief Template functor to compute the arc cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::acos()
*/
template<typename Scalar> struct scalar_acos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return acos(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasACos
};
};
/** \internal
* \brief Template functor to compute the arc sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::asin()
*/
template<typename Scalar> struct scalar_asin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return asin(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasASin
};
};
/** \internal
* \brief Template functor to compute the atan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::atan()
*/
template<typename Scalar> struct scalar_atan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return atan(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_atan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasATan
};
};
/** \internal
* \brief Template functor to compute the tanh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tanh()
*/
template<typename Scalar> struct scalar_tanh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tanh(a); }
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptanh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tanh_op<Scalar> >
{
enum {
PacketAccess = packet_traits<Scalar>::HasTanH,
Cost =
(PacketAccess
// The following numbers are based on the AVX implementation,
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
// 9 pmadd, 2 pmul, 1 div, 2 other
? (2 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<packet_traits<Scalar>::HasDiv>::Cost)
#else
? (11 * NumTraits<Scalar>::AddCost +
11 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<packet_traits<Scalar>::HasDiv>::Cost)
#endif
// These number are based on the tanh implementation in
// GenericPacketMath.h.
// 3 padd/psub, 3 pmul, 2 pdiv, 1 pexp, 3 other
: (6 * NumTraits<Scalar>::AddCost + 3 * NumTraits<Scalar>::MulCost +
2 * NumTraits<Scalar>::template Div<packet_traits<Scalar>::HasDiv>::Cost +
functor_traits<scalar_exp_op<Scalar> >::Cost))
};
};
/** \internal
* \brief Template functor to compute the sigmoid of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sigmoid()
*/
template <typename Scalar>
struct scalar_sigmoid_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar
operator()(const Scalar& x) const {
const Scalar one = Scalar(1);
return one / (one + numext::exp(-x));
}
// Doesn't do anything fancy, just a 9/10-degree rational interpolant which
// interpolates 1/(1+exp(-x)) - 0.5 up to a couple of ulp in the range
// [-18, 18], outside of which the fl(sigmoid(x)) = {0|1}. The shifted
// sigmoid is interpolated because it was easier to make the fit converge.
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& _x) const {
// Clamp the inputs to the range [-18, 18] since anything outside
// this range is 0.0f or 1.0f in single-precision.
const Packet x = pmax(pset1<Packet>(Scalar(-18.0)),
pmin(pset1<Packet>(Scalar(18.0)), _x));
// The monomial coefficients of the numerator polynomial (odd).
const Packet alpha_1 = pset1<Packet>(Scalar(2.48287947061529e-01));
const Packet alpha_3 = pset1<Packet>(Scalar(8.51377133304701e-03));
const Packet alpha_5 = pset1<Packet>(Scalar(6.08574864600143e-05));
const Packet alpha_7 = pset1<Packet>(Scalar(1.15627324459942e-07));
const Packet alpha_9 = pset1<Packet>(Scalar(4.37031012579801e-11));
// The monomial coefficients of the denominator polynomial (even).
const Packet beta_0 = pset1<Packet>(Scalar(9.93151921023180e-01));
const Packet beta_2 = pset1<Packet>(Scalar(1.16817656904453e-01));
const Packet beta_4 = pset1<Packet>(Scalar(1.70198817374094e-03));
const Packet beta_6 = pset1<Packet>(Scalar(6.29106785017040e-06));
const Packet beta_8 = pset1<Packet>(Scalar(5.76102136993427e-09));
const Packet beta_10 = pset1<Packet>(Scalar(6.10247389755681e-13));
// Since the polynomials are odd/even, we need x^2.
const Packet x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
Packet p = pmadd(x2, alpha_9, alpha_7);
p = pmadd(x2, p, alpha_5);
p = pmadd(x2, p, alpha_3);
p = pmadd(x2, p, alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial p.
Packet q = pmadd(x2, beta_10, beta_8);
q = pmadd(x2, q, beta_6);
q = pmadd(x2, q, beta_4);
q = pmadd(x2, q, beta_2);
q = pmadd(x2, q, beta_0);
// Divide the numerator by the denominator and shift it up.
return pmax(pset1<Packet>(Scalar(0.0)),
pmin(pset1<Packet>(Scalar(1.0)),
padd(pdiv(p, q), pset1<Packet>(Scalar(0.5)))));
}
};
template <typename Scalar>
struct functor_traits<scalar_sigmoid_op<Scalar> > {
enum {
PacketAccess =
packet_traits<Scalar>::HasAdd && packet_traits<Scalar>::HasDiv &&
packet_traits<Scalar>::HasMul && packet_traits<Scalar>::HasMin &&
packet_traits<Scalar>::HasMax,
Cost = (PacketAccess
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
// 9 pmadd, 2 pmul, 1 div, 2 other
? (2 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<
packet_traits<Scalar>::HasDiv>::Cost)
#else
? (11 * NumTraits<Scalar>::AddCost +
11 * NumTraits<Scalar>::MulCost +
NumTraits<Scalar>::template Div<
packet_traits<Scalar>::HasDiv>::Cost)
#endif
// These number are based on the tanh implementation in
// GenericPacketMath.h.
// 1 padd/psub, 1 pdiv, 1 pexp, 1 other
: (1 * NumTraits<Scalar>::AddCost +
3 * NumTraits<Scalar>::MulCost +
1 * NumTraits<Scalar>::template Div<
packet_traits<Scalar>::HasDiv>::Cost +
functor_traits<scalar_exp_op<Scalar> >::Cost))
};
};
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the rounded value of a scalar
* \sa class CwiseUnaryOp, ArrayBase::round()
*/
template<typename Scalar> struct scalar_round_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
};
template<typename Scalar>
struct functor_traits<scalar_round_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRound
};
};
/** \internal
* \brief Template functor to compute the floor of a scalar
* \sa class CwiseUnaryOp, ArrayBase::floor()
*/
template<typename Scalar> struct scalar_floor_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
};
template<typename Scalar>
struct functor_traits<scalar_floor_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasFloor
};
};
/** \internal
* \brief Template functor to compute the ceil of a scalar
* \sa class CwiseUnaryOp, ArrayBase::ceil()
*/
template<typename Scalar> struct scalar_ceil_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
};
template<typename Scalar>
struct functor_traits<scalar_ceil_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCeil
};
};
/** \internal
* \brief Template functor to compute whether a scalar is NaN
* \sa class CwiseUnaryOp, ArrayBase::isnan()
*/
template<typename Scalar> struct scalar_isnan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isnan)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isnan_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar is +/-inf
* \sa class CwiseUnaryOp, ArrayBase::isinf()
*/
template<typename Scalar> struct scalar_isinf_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isinf)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isinf_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar has a finite value
* \sa class CwiseUnaryOp, ArrayBase::isfinite()
*/
template<typename Scalar> struct scalar_isfinite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isfinite)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isfinite_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the logical not of a boolean
*
* \sa class CwiseUnaryOp, ArrayBase::operator!
*/
template <typename Scalar>
struct scalar_boolean_not_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const bool& a) const {
return !a;
}
};
template <typename Scalar>
struct functor_traits<scalar_boolean_not_op<Scalar> > {
enum { Cost = NumTraits<bool>::AddCost, PacketAccess = false };
};
/** \internal
* \brief Template functor to compute the signum of a scalar
* \sa class CwiseUnaryOp, Cwise::sign()
*/
template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
template<typename Scalar>
struct scalar_sign_op<Scalar,false> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
}
};
template<typename Scalar>
struct scalar_sign_op<Scalar,true> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
typedef typename NumTraits<Scalar>::Real Real;
Real aa = numext::abs(a);
const Real divisor = (aa == 0) ? Real(0) : Real(1) / aa;
return Scalar(real(a) * divisor, imag(a) * divisor);
}
};
template<typename Scalar>
struct functor_traits<scalar_sign_op<Scalar> >
{ enum {
Cost =
NumTraits<Scalar>::IsComplex
? ( 8*NumTraits<Scalar>::MulCost ) // roughly
: ( 3*NumTraits<Scalar>::AddCost),
PacketAccess = false,
};
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_FUNCTORS_H