blob: 62ea57405810bb28ca8d193c48d51bfeebe55b60 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
#define EIGEN_MATH_FUNCTIONS_AVX_H
// For some reason, this function didn't make it into the avxintirn.h
// used by the compiler, so we'll just wrap it.
#define _mm256_setr_m128(lo, hi) \
_mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1)
/* The sin, cos, exp, and log functions of this file are loosely derived from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
namespace Eigen {
namespace internal {
// Sine function
// Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and
// evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants
// are (anti-)symmetric and thus have only odd/even coefficients
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psin<Packet8f>(const Packet8f& _x) {
Packet8f x = _x;
// Some useful values.
_EIGEN_DECLARE_CONST_Packet8i(one, 1);
_EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
_EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
_EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f);
_EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f);
_EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00);
_EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04);
_EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07);
_EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00);
// Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period.
Packet8f z = pmul(x, p8f_one_over_pi);
Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four));
x = pmadd(shift, p8f_neg_pi_first, x);
x = pmadd(shift, p8f_neg_pi_second, x);
x = pmadd(shift, p8f_neg_pi_third, x);
z = pmul(x, p8f_four_over_pi);
// Make a mask for the entries that need flipping, i.e. wherever the shift
// is odd.
Packet8i shift_ints = _mm256_cvtps_epi32(shift);
Packet8i shift_isodd =
(__m256i)_mm256_and_ps((__m256)shift_ints, (__m256)p8i_one);
#ifdef EIGEN_VECTORIZE_AVX2
Packet8i sign_flip_mask = _mm256_slli_epi32(shift_isodd, 31);
#else
__m128i lo =
_mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 0), 31);
__m128i hi =
_mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 1), 31);
Packet8i sign_flip_mask = _mm256_setr_m128(lo, hi);
#endif
// Create a mask for which interpolant to use, i.e. if z > 1, then the mask
// is set to ones for that entry.
Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ);
// Evaluate the polynomial for the interval [1,3] in z.
_EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f);
_EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01);
_EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02);
_EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04);
Packet8f z_minus_two = psub(z, p8f_two);
Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two);
Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4);
right = pmadd(right, z_minus_two2, p8f_coeff_right_2);
right = pmadd(right, z_minus_two2, p8f_coeff_right_0);
// Evaluate the polynomial for the interval [-1,1] in z.
_EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01);
_EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02);
_EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03);
_EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05);
Packet8f z2 = pmul(z, z);
Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5);
left = pmadd(left, z2, p8f_coeff_left_3);
left = pmadd(left, z2, p8f_coeff_left_1);
left = pmul(left, z);
// Assemble the results, i.e. select the left and right polynomials.
left = _mm256_andnot_ps(ival_mask, left);
right = _mm256_and_ps(ival_mask, right);
Packet8f res = _mm256_or_ps(left, right);
// Flip the sign on the odd intervals and return the result.
res = _mm256_xor_ps(res, (__m256)sign_flip_mask);
return res;
}
// Natural logarithm
// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2)
// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can
// be easily approximated by a polynomial centered on m=1 for stability.
// TODO(gonnet): Further reduce the interval allowing for lower-degree
// polynomial interpolants -> ... -> profit!
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
plog<Packet8f>(const Packet8f& _x) {
Packet8f x = _x;
_EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
_EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000);
// The smallest non denormalized float number.
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000);
// Polynomial coefficients.
_EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f);
// invalid_mask is set to true when x is NaN
Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ);
Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ);
// Truncate input values to the minimum positive normal.
x = pmax(x, p8f_min_norm_pos);
// Extract the shifted exponents (No bitwise shifting in regular AVX, so
// convert to SSE and do it there).
#ifdef EIGEN_VECTORIZE_AVX2
Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_srli_epi32((__m256i)x, 23));
#else
__m128i lo = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 0), 23);
__m128i hi = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 1), 23);
Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_setr_m128(lo, hi));
#endif
Packet8f e = _mm256_sub_ps(emm0, p8f_126f);
// Set the exponents to -1, i.e. x are in the range [0.5,1).
x = _mm256_and_ps(x, p8f_inv_mant_mask);
x = _mm256_or_ps(x, p8f_half);
// part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2))
// and shift by -1. The values are then centered around 0, which improves
// the stability of the polynomial evaluation.
// if( x < SQRTHF ) {
// e -= 1;
// x = x + x - 1.0;
// } else { x = x - 1.0; }
Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ);
Packet8f tmp = _mm256_and_ps(x, mask);
x = psub(x, p8f_1);
e = psub(e, _mm256_and_ps(p8f_1, mask));
x = padd(x, tmp);
Packet8f x2 = pmul(x, x);
Packet8f x3 = pmul(x2, x);
// Evaluate the polynomial approximant of degree 8 in three parts, probably
// to improve instruction-level parallelism.
Packet8f y, y1, y2;
y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1);
y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4);
y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7);
y = pmadd(y, x, p8f_cephes_log_p2);
y1 = pmadd(y1, x, p8f_cephes_log_p5);
y2 = pmadd(y2, x, p8f_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
// Add the logarithm of the exponent back to the result of the interpolation.
y1 = pmul(e, p8f_cephes_log_q1);
tmp = pmul(x2, p8f_half);
y = padd(y, y1);
x = psub(x, tmp);
y2 = pmul(e, p8f_cephes_log_q2);
x = padd(x, y);
x = padd(x, y2);
// Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF.
return _mm256_or_ps(
_mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)),
_mm256_and_ps(iszero_mask, p8f_minus_inf));
}
// Exponential function. Works by writing "x = m*log(2) + r" where
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
pexp<Packet8f>(const Packet8f& _x) {
_EIGEN_DECLARE_CONST_Packet8f(1, 1.0f);
_EIGEN_DECLARE_CONST_Packet8f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet8f(127, 127.0f);
_EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f);
_EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f);
// Clamp x.
Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo);
// Express exp(x) as exp(m*ln(2) + r), start by extracting
// m = floor(x/ln(2) + 0.5).
Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half));
// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is
// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating
// truncation errors. Note that we don't use the "pmadd" function here to
// ensure that a precision-preserving FMA instruction is used.
#ifdef EIGEN_VECTORIZE_FMA
_EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f);
Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x);
#else
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f);
_EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f);
Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1));
r = psub(r, pmul(m, p8f_cephes_exp_C2));
#endif
Packet8f r2 = pmul(r, r);
// TODO(gonnet): Split into odd/even polynomials and try to exploit
// instruction-level parallelism.
Packet8f y = p8f_cephes_exp_p0;
y = pmadd(y, r, p8f_cephes_exp_p1);
y = pmadd(y, r, p8f_cephes_exp_p2);
y = pmadd(y, r, p8f_cephes_exp_p3);
y = pmadd(y, r, p8f_cephes_exp_p4);
y = pmadd(y, r, p8f_cephes_exp_p5);
y = pmadd(y, r2, r);
y = padd(y, p8f_1);
// Build emm0 = 2^m.
Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127));
#ifdef EIGEN_VECTORIZE_AVX2
emm0 = _mm256_slli_epi32(emm0, 23);
#else
__m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 0), 23);
__m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 1), 23);
emm0 = _mm256_setr_m128(lo, hi);
#endif
// Return 2^m * exp(r).
return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x);
}
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
pexp<Packet4d>(const Packet4d& _x) {
Packet4d x = _x;
_EIGEN_DECLARE_CONST_Packet4d(1, 1.0);
_EIGEN_DECLARE_CONST_Packet4d(2, 2.0);
_EIGEN_DECLARE_CONST_Packet4d(half, 0.5);
_EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437);
_EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303);
_EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125);
_EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6);
_EIGEN_DECLARE_CONST_Packet4i(1023, 1023);
Packet4d tmp, fx;
// clamp x
x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo);
// Express exp(x) as exp(g + n*log(2)).
fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half);
// Get the integer modulus of log(2), i.e. the "n" described above.
fx = _mm256_floor_pd(fx);
// Get the remainder modulo log(2), i.e. the "g" described above. Subtract
// n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last
// digits right.
tmp = pmul(fx, p4d_cephes_exp_C1);
Packet4d z = pmul(fx, p4d_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
Packet4d x2 = pmul(x, x);
// Evaluate the numerator polynomial of the rational interpolant.
Packet4d px = p4d_cephes_exp_p0;
px = pmadd(px, x2, p4d_cephes_exp_p1);
px = pmadd(px, x2, p4d_cephes_exp_p2);
px = pmul(px, x);
// Evaluate the denominator polynomial of the rational interpolant.
Packet4d qx = p4d_cephes_exp_q0;
qx = pmadd(qx, x2, p4d_cephes_exp_q1);
qx = pmadd(qx, x2, p4d_cephes_exp_q2);
qx = pmadd(qx, x2, p4d_cephes_exp_q3);
// I don't really get this bit, copied from the SSE2 routines, so...
// TODO(gonnet): Figure out what is going on here, perhaps find a better
// rational interpolant?
x = _mm256_div_pd(px, psub(qx, px));
x = pmadd(p4d_2, x, p4d_1);
// Build e=2^n by constructing the exponents in a 128-bit vector and
// shifting them to where they belong in double-precision values.
__m128i emm0 = _mm256_cvtpd_epi32(fx);
emm0 = _mm_add_epi32(emm0, p4i_1023);
emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0));
__m128i lo = _mm_slli_epi64(emm0, 52);
__m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52);
__m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0);
e = _mm256_insertf128_si256(e, hi, 1);
// Construct the result 2^n * exp(g) = e * x. The max is used to catch
// non-finite values in the input.
return pmax(pmul(x, Packet4d(e)), _x);
}
// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. The main advantage of this approach is not just speed, but
// also the fact that it can be inlined and pipelined with other computations,
// further reducing its effective latency.
#if EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
psqrt<Packet8f>(const Packet8f& _x) {
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
Packet8f neg_half = pmul(_x, p8f_minus_half);
Packet8f denormal_mask =
_mm256_and_ps(_mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ),
_mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
// Compute approximate reciprocal sqrt.
Packet8f x = _mm256_rsqrt_ps(_x);
// Do a single step of Newton's iteration.
x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
// Multiply the original _x by it's reciprocal square root to extract the
// square root.
x = pmul(_x, x);
// Flush results for denormals to zero.
return _mm256_andnot_ps(denormal_mask, x);
}
#else
template <>
EIGEN_STRONG_INLINE Packet8f psqrt<Packet8f>(const Packet8f& x) {
return _mm256_sqrt_ps(x);
}
#endif
template <>
EIGEN_STRONG_INLINE Packet4d psqrt<Packet4d>(const Packet4d& x) {
return _mm256_sqrt_pd(x);
}
// Functions for rsqrt.
// Almost identical to the sqrt routine, just leave out the last multiplication
// and fill in NaN/Inf where needed. Note that this function only exists as an
// iterative version since there is no instruction for diretly computing the
// reciprocal square root in AVX/AVX2 (there will be one in AVX-512).
#ifdef EIGEN_FAST_MATH
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
prsqrt<Packet8f>(const Packet8f& _x) {
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
// Remeber which entries were zero (or almost).
Packet8f is_zero =
_mm256_and_ps(_mm256_cmp_ps(_x, p8f_flt_min, _CMP_NGE_UQ),
_mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
// select only the inverse sqrt of positive normal inputs (denormals are
// flushed to zero and cause infs).
Packet8f x = _mm256_rsqrt_ps(_x);
// Do a single step of Newton's iteration.
Packet8f neg_half = pmul(_x, p8f_minus_half);
return _mm256_blendv_ps(
pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five)), p8f_inf,
is_zero);
}
#else
template <>
EIGEN_STRONG_INLINE Packet8f prsqrt<Packet8f>(const Packet8f& x) {
_EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x));
}
#endif
template <>
EIGEN_STRONG_INLINE Packet4d prsqrt<Packet4d>(const Packet4d& x) {
_EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x));
}
// Functions for division.
// The EIGEN_FAST_MATH version uses the _mm_rcp_ps approximation and one step of
// Newton's method, at a cost of 1-2 bits of precision as opposed to the exact
// solution. The main advantage of this approach is not just speed, but also the
// fact that it can be inlined and pipelined with other computations, further
// reducing its effective latency.
#if EIGEN_FAST_DIV
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) {
_EIGEN_DECLARE_CONST_Packet8f(two, 2.0f);
/* Start with an estimate of the reciprocal of b. */
Packet8f x = _mm256_rcp_ps(b);
/* One step of Newton's method on b - x^-1 == 0. */
#ifdef EIGEN_VECTORIZE_FMA
x = pmul(x, _mm256_fnmadd_ps(b, x, p8f_two));
#else
x = pmul(x, pmadd(-b, x, p8f_two));
#endif
// Multiply the inverse of b with a.
return pmul(a, x);
}
#else
template <>
EIGEN_STRONG_INLINE Packet8f
pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) {
return _mm256_div_ps(a, b);
}
#endif
template <>
EIGEN_STRONG_INLINE Packet4d
pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) {
return _mm256_div_pd(a, b);
}
template <>
EIGEN_STRONG_INLINE Packet8i
pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/) {
eigen_assert(false && "packet integer division are not supported by AVX");
return pset1<Packet8i>(0);
}
// Hyperbolic Tangent function.
// Doesn't do anything fancy, just a 13/6-degree rational interpolant which
// is accurate up to a couple of ulp in the range [-9, 9], outside of which the
// fl(tanh(x)) = +/-1.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
ptanh<Packet8f>(const Packet8f& _x) {
// Clamp the inputs to the range [-9, 9] since anything outside
// this range is +/-1.0f in single-precision.
_EIGEN_DECLARE_CONST_Packet8f(plus_9, 9.0f);
_EIGEN_DECLARE_CONST_Packet8f(minus_9, -9.0f);
const Packet8f x = pmax(p8f_minus_9, pmin(p8f_plus_9, _x));
// The monomial coefficients of the numerator polynomial (odd).
_EIGEN_DECLARE_CONST_Packet8f(alpha_1, 4.89352455891786e-03f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_3, 6.37261928875436e-04f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_5, 1.48572235717979e-05f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_7, 5.12229709037114e-08f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_9, -8.60467152213735e-11f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_11, 2.00018790482477e-13f);
_EIGEN_DECLARE_CONST_Packet8f(alpha_13, -2.76076847742355e-16f);
// The monomial coefficients of the denominator polynomial (even).
_EIGEN_DECLARE_CONST_Packet8f(beta_0, 4.89352518554385e-03f);
_EIGEN_DECLARE_CONST_Packet8f(beta_2, 2.26843463243900e-03f);
_EIGEN_DECLARE_CONST_Packet8f(beta_4, 1.18534705686654e-04f);
_EIGEN_DECLARE_CONST_Packet8f(beta_6, 1.19825839466702e-06f);
// Since the polynomials are odd/even, we need x^2.
const Packet8f x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
Packet8f p = pmadd(x2, p8f_alpha_13, p8f_alpha_11);
p = pmadd(x2, p, p8f_alpha_9);
p = pmadd(x2, p, p8f_alpha_7);
p = pmadd(x2, p, p8f_alpha_5);
p = pmadd(x2, p, p8f_alpha_3);
p = pmadd(x2, p, p8f_alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial p.
Packet8f q = pmadd(x2, p8f_beta_6, p8f_beta_4);
q = pmadd(x2, q, p8f_beta_2);
q = pmadd(x2, q, p8f_beta_0);
// Divide the numerator by the denominator.
return pdiv(p, q);
}
// Identical to the ptanh in GenericPacketMath.h, but for doubles use
// a small/medium approximation threshold of 0.001.
template<> EIGEN_STRONG_INLINE Packet4d ptanh_approx_threshold() {
return pset1<Packet4d>(0.001);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_AVX_H