blob: 76bfa159cedc5db03aafe8c798024a762b483c47 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H
#define EIGEN_TRIANGULARMATRIXVECTOR_H
namespace Eigen {
namespace internal {
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder, int Version=Specialized>
struct triangular_matrix_vector_product;
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int Version>
struct triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor,Version>
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = ((Mode&Lower)==Lower),
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha);
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int Version>
EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor,Version>
::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha)
{
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
Index size = (std::min)(_rows,_cols);
Index rows = IsLower ? _rows : (std::min)(_rows,_cols);
Index cols = IsLower ? (std::min)(_rows,_cols) : _cols;
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
typedef Map<const Matrix<RhsScalar,Dynamic,1>, 0, InnerStride<> > RhsMap;
const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr));
typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
ResMap res(_res,rows);
typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
for (Index pi=0; pi<size; pi+=PanelWidth)
{
Index actualPanelWidth = (std::min)(PanelWidth, size-pi);
for (Index k=0; k<actualPanelWidth; ++k)
{
Index i = pi + k;
Index s = IsLower ? ((HasUnitDiag||HasZeroDiag) ? i+1 : i ) : pi;
Index r = IsLower ? actualPanelWidth-k : k+1;
if ((!(HasUnitDiag||HasZeroDiag)) || (--r)>0)
res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r);
if (HasUnitDiag)
res.coeffRef(i) += alpha * cjRhs.coeff(i);
}
Index r = IsLower ? rows - pi - actualPanelWidth : pi;
if (r>0)
{
Index s = IsLower ? pi+actualPanelWidth : 0;
general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,ConjLhs,RhsScalar,RhsMapper,ConjRhs,BuiltIn>::run(
r, actualPanelWidth,
LhsMapper(&lhs.coeffRef(s,pi), lhsStride),
RhsMapper(&rhs.coeffRef(pi), rhsIncr),
&res.coeffRef(s), resIncr, alpha);
}
}
if((!IsLower) && cols>size)
{
general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,ConjLhs,RhsScalar,RhsMapper,ConjRhs>::run(
rows, cols-size,
LhsMapper(&lhs.coeffRef(0,size), lhsStride),
RhsMapper(&rhs.coeffRef(size), rhsIncr),
_res, resIncr, alpha);
}
}
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs,int Version>
struct triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor,Version>
{
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = ((Mode&Lower)==Lower),
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha);
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs,int Version>
EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor,Version>
::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha)
{
static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH;
Index diagSize = (std::min)(_rows,_cols);
Index rows = IsLower ? _rows : diagSize;
Index cols = IsLower ? diagSize : _cols;
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride));
typename conj_expr_if<ConjLhs,LhsMap>::type cjLhs(lhs);
typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
const RhsMap rhs(_rhs,cols);
typename conj_expr_if<ConjRhs,RhsMap>::type cjRhs(rhs);
typedef Map<Matrix<ResScalar,Dynamic,1>, 0, InnerStride<> > ResMap;
ResMap res(_res,rows,InnerStride<>(resIncr));
typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
for (Index pi=0; pi<diagSize; pi+=PanelWidth)
{
Index actualPanelWidth = (std::min)(PanelWidth, diagSize-pi);
for (Index k=0; k<actualPanelWidth; ++k)
{
Index i = pi + k;
Index s = IsLower ? pi : ((HasUnitDiag||HasZeroDiag) ? i+1 : i);
Index r = IsLower ? k+1 : actualPanelWidth-k;
if ((!(HasUnitDiag||HasZeroDiag)) || (--r)>0)
res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum();
if (HasUnitDiag)
res.coeffRef(i) += alpha * cjRhs.coeff(i);
}
Index r = IsLower ? pi : cols - pi - actualPanelWidth;
if (r>0)
{
Index s = IsLower ? 0 : pi + actualPanelWidth;
general_matrix_vector_product<Index,LhsScalar,LhsMapper,RowMajor,ConjLhs,RhsScalar,RhsMapper,ConjRhs,BuiltIn>::run(
actualPanelWidth, r,
LhsMapper(&lhs.coeffRef(pi,s), lhsStride),
RhsMapper(&rhs.coeffRef(s), rhsIncr),
&res.coeffRef(pi), resIncr, alpha);
}
}
if(IsLower && rows>diagSize)
{
general_matrix_vector_product<Index,LhsScalar,LhsMapper,RowMajor,ConjLhs,RhsScalar,RhsMapper,ConjRhs>::run(
rows-diagSize, cols,
LhsMapper(&lhs.coeffRef(diagSize,0), lhsStride),
RhsMapper(&rhs.coeffRef(0), rhsIncr),
&res.coeffRef(diagSize), resIncr, alpha);
}
}
/***************************************************************************
* Wrapper to product_triangular_vector
***************************************************************************/
template<int Mode,int StorageOrder>
struct trmv_selector;
} // end namespace internal
namespace internal {
template<int Mode, typename Lhs, typename Rhs>
struct triangular_product_impl<Mode,true,Lhs,false,Rhs,true>
{
template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
internal::trmv_selector<Mode,(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(lhs, rhs, dst, alpha);
}
};
template<int Mode, typename Lhs, typename Rhs>
struct triangular_product_impl<Mode,false,Lhs,true,Rhs,false>
{
template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
Transpose<Dest> dstT(dst);
internal::trmv_selector<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),
(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>
::run(rhs.transpose(),lhs.transpose(), dstT, alpha);
}
};
} // end namespace internal
namespace internal {
// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
template<int Mode> struct trmv_selector<Mode,ColMajor>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef typename Dest::RealScalar RealScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs);
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs);
ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
internal::triangular_matrix_vector_product
<Index,Mode,
LhsScalar, LhsBlasTraits::NeedToConjugate,
RhsScalar, RhsBlasTraits::NeedToConjugate,
ColMajor>
::run(actualLhs.rows(),actualLhs.cols(),
actualLhs.data(),actualLhs.outerStride(),
actualRhs.data(),actualRhs.innerStride(),
actualDestPtr,1,compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
}
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
{
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
}
}
};
template<int Mode> struct trmv_selector<Mode,RowMajor>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs);
RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs);
ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha;
enum {
DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
internal::triangular_matrix_vector_product
<Index,Mode,
LhsScalar, LhsBlasTraits::NeedToConjugate,
RhsScalar, RhsBlasTraits::NeedToConjugate,
RowMajor>
::run(actualLhs.rows(),actualLhs.cols(),
actualLhs.data(),actualLhs.outerStride(),
actualRhsPtr,1,
dest.data(),dest.innerStride(),
actualAlpha);
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
{
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
}
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TRIANGULARMATRIXVECTOR_H