blob: bb7609d3f6b30418d0d0915412665fb27875fc40 [file] [log] [blame] [edit]
/* Implement simple hashing table with string based keys.
Copyright (C) 1994-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, October 1994.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>. */
#include "simple-hash.h"
#include <obstack.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <values.h>
#define obstack_chunk_alloc malloc
#define obstack_chunk_free free
#ifndef BITSPERBYTE
#define BITSPERBYTE 8
#endif
#ifndef bcopy
#define bcopy(s, d, n) memcpy((d), (s), (n))
#endif
#define hashval_t uint32_t
#include "third_party/glibc_locales/common/hashval.h"
#include "third_party/glibc_locales/programs/xmalloc.h"
typedef struct hash_entry {
unsigned long used;
const void *key;
size_t keylen;
void *data;
struct hash_entry *next;
} hash_entry;
/* Prototypes for local functions. */
static void insert_entry_2(hash_table *htab, const void *key, size_t keylen,
unsigned long hval, size_t idx, void *data);
static size_t lookup(const hash_table *htab, const void *key, size_t keylen,
unsigned long int hval);
static int is_prime(unsigned long int candidate);
int init_hash(htab, init_size)
hash_table *htab;
unsigned long int init_size;
{
/* We need the size to be a prime. */
init_size = next_prime(init_size);
/* Initialize the data structure. */
htab->size = init_size;
htab->filled = 0;
htab->first = NULL;
htab->table = (void *)xcalloc(init_size + 1, sizeof(hash_entry));
if (htab->table == NULL) return -1;
obstack_init(&htab->mem_pool);
return 0;
}
int delete_hash(htab)
hash_table *htab;
{
free(htab->table);
obstack_free(&htab->mem_pool, NULL);
return 0;
}
int insert_entry(htab, key, keylen, data)
hash_table *htab;
const void *key;
size_t keylen;
void *data;
{
unsigned long int hval = compute_hashval(key, keylen);
hash_entry *table = (hash_entry *)htab->table;
size_t idx = lookup(htab, key, keylen, hval);
if (table[idx].used) /* We don't want to overwrite the old value. */
return -1;
else {
/* An empty bucket has been found. */
insert_entry_2(htab, obstack_copy(&htab->mem_pool, key, keylen), keylen,
hval, idx, data);
return 0;
}
}
static void insert_entry_2(htab, key, keylen, hval, idx, data) hash_table *htab;
const void *key;
size_t keylen;
unsigned long int hval;
size_t idx;
void *data;
{
hash_entry *table = (hash_entry *)htab->table;
table[idx].used = hval;
table[idx].key = key;
table[idx].keylen = keylen;
table[idx].data = data;
/* List the new value in the list. */
if ((hash_entry *)htab->first == NULL) {
table[idx].next = &table[idx];
htab->first = &table[idx];
} else {
table[idx].next = ((hash_entry *)htab->first)->next;
((hash_entry *)htab->first)->next = &table[idx];
htab->first = &table[idx];
}
++htab->filled;
if (100 * htab->filled > 75 * htab->size) {
/* Table is filled more than 75%. Resize the table.
Experiments have shown that for best performance, this threshold
must lie between 40% and 85%. */
unsigned long int old_size = htab->size;
htab->size = next_prime(htab->size * 2);
htab->filled = 0;
htab->first = NULL;
htab->table = (void *)xcalloc(1 + htab->size, sizeof(hash_entry));
for (idx = 1; idx <= old_size; ++idx)
if (table[idx].used)
insert_entry_2(
htab, table[idx].key, table[idx].keylen, table[idx].used,
lookup(htab, table[idx].key, table[idx].keylen, table[idx].used),
table[idx].data);
free(table);
}
}
int find_entry(htab, key, keylen, result) const hash_table *htab;
const void *key;
size_t keylen;
void **result;
{
hash_entry *table = (hash_entry *)htab->table;
size_t idx = lookup(htab, key, keylen, compute_hashval(key, keylen));
if (table[idx].used == 0) return -1;
*result = table[idx].data;
return 0;
}
int set_entry(htab, key, keylen, newval)
hash_table *htab;
const void *key;
size_t keylen;
void *newval;
{
hash_entry *table = (hash_entry *)htab->table;
size_t idx = lookup(htab, key, keylen, compute_hashval(key, keylen));
if (table[idx].used == 0) return -1;
table[idx].data = newval;
return 0;
}
int iterate_table(htab, ptr, key, keylen, data) const hash_table *htab;
void **ptr;
const void **key;
size_t *keylen;
void **data;
{
if (*ptr == NULL) {
if (htab->first == NULL) return -1;
*ptr = (void *)((hash_entry *)htab->first)->next;
} else {
if (*ptr == htab->first) return -1;
*ptr = (void *)(((hash_entry *)*ptr)->next);
}
*key = ((hash_entry *)*ptr)->key;
*keylen = ((hash_entry *)*ptr)->keylen;
*data = ((hash_entry *)*ptr)->data;
return 0;
}
/* References:
[Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
[Knuth] The Art of Computer Programming, part3 (6.4) */
static size_t lookup(htab, key, keylen, hval) const hash_table *htab;
const void *key;
size_t keylen;
unsigned long int hval;
{
unsigned long int hash;
size_t idx;
hash_entry *table = (hash_entry *)htab->table;
/* First hash function: simply take the modul but prevent zero. */
hash = 1 + hval % htab->size;
idx = hash;
if (table[idx].used) {
if (table[idx].used == hval && table[idx].keylen == keylen &&
memcmp(table[idx].key, key, keylen) == 0)
return idx;
/* Second hash function as suggested in [Knuth]. */
hash = 1 + hval % (htab->size - 2);
do {
if (idx <= hash)
idx = htab->size + idx - hash;
else
idx -= hash;
/* If entry is found use it. */
if (table[idx].used == hval && table[idx].keylen == keylen &&
memcmp(table[idx].key, key, keylen) == 0)
return idx;
} while (table[idx].used);
}
return idx;
}
unsigned long int next_prime(seed)
unsigned long int seed;
{
/* Make it definitely odd. */
seed |= 1;
while (!is_prime(seed)) seed += 2;
return seed;
}
static int is_prime(candidate)
unsigned long int candidate;
{
/* No even number and none less than 10 will be passed here. */
unsigned long int divn = 3;
unsigned long int sq = divn * divn;
while (sq < candidate && candidate % divn != 0) {
++divn;
sq += 4 * divn;
++divn;
}
return candidate % divn != 0;
}