| /* sqrmod_bnm1.c -- squaring mod B^n-1. |
| |
| Contributed to the GNU project by Niels Möller, Torbjorn Granlund and |
| Marco Bodrato. |
| |
| THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
| SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
| GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2009, 2010, 2012, 2020, 2022 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| /* Input is {ap,rn}; output is {rp,rn}, computation is |
| mod B^rn - 1, and values are semi-normalised; zero is represented |
| as either 0 or B^n - 1. Needs a scratch of 2rn limbs at tp. |
| tp==rp is allowed. */ |
| static void |
| mpn_bc_sqrmod_bnm1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp) |
| { |
| mp_limb_t cy; |
| |
| ASSERT (0 < rn); |
| |
| mpn_sqr (tp, ap, rn); |
| cy = mpn_add_n (rp, tp, tp + rn, rn); |
| /* If cy == 1, then the value of rp is at most B^rn - 2, so there can |
| * be no overflow when adding in the carry. */ |
| MPN_INCR_U (rp, rn, cy); |
| } |
| |
| |
| /* Input is {ap,rn+1}; output is {rp,rn+1}, in |
| normalised representation, computation is mod B^rn + 1. Needs |
| a scratch area of 2rn limbs at tp; tp == rp is allowed. |
| Output is normalised. */ |
| static void |
| mpn_bc_sqrmod_bnp1 (mp_ptr rp, mp_srcptr ap, mp_size_t rn, mp_ptr tp) |
| { |
| mp_limb_t cy; |
| unsigned k; |
| |
| ASSERT (0 < rn); |
| |
| if (UNLIKELY (ap[rn])) |
| { |
| *rp = 1; |
| MPN_FILL (rp + 1, rn, 0); |
| return; |
| } |
| else if (MPN_SQRMOD_BKNP1_USABLE (rn, k, MUL_FFT_MODF_THRESHOLD)) |
| { |
| mp_size_t n_k = rn / k; |
| TMP_DECL; |
| |
| TMP_MARK; |
| mpn_sqrmod_bknp1 (rp, ap, n_k, k, |
| TMP_ALLOC_LIMBS (mpn_sqrmod_bknp1_itch (rn))); |
| TMP_FREE; |
| return; |
| } |
| mpn_sqr (tp, ap, rn); |
| cy = mpn_sub_n (rp, tp, tp + rn, rn); |
| rp[rn] = 0; |
| MPN_INCR_U (rp, rn + 1, cy); |
| } |
| |
| |
| /* Computes {rp,MIN(rn,2an)} <- {ap,an}^2 Mod(B^rn-1) |
| * |
| * The result is expected to be ZERO if and only if the operand |
| * already is. Otherwise the class [0] Mod(B^rn-1) is represented by |
| * B^rn-1. |
| * It should not be a problem if sqrmod_bnm1 is used to |
| * compute the full square with an <= 2*rn, because this condition |
| * implies (B^an-1)^2 < (B^rn-1) . |
| * |
| * Requires rn/4 < an <= rn |
| * Scratch need: rn/2 + (need for recursive call OR rn + 3). This gives |
| * |
| * S(n) <= rn/2 + MAX (rn + 4, S(n/2)) <= 3/2 rn + 4 |
| */ |
| void |
| mpn_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an, mp_ptr tp) |
| { |
| ASSERT (0 < an); |
| ASSERT (an <= rn); |
| |
| if ((rn & 1) != 0 || BELOW_THRESHOLD (rn, SQRMOD_BNM1_THRESHOLD)) |
| { |
| if (UNLIKELY (an < rn)) |
| { |
| if (UNLIKELY (2*an <= rn)) |
| { |
| mpn_sqr (rp, ap, an); |
| } |
| else |
| { |
| mp_limb_t cy; |
| mpn_sqr (tp, ap, an); |
| cy = mpn_add (rp, tp, rn, tp + rn, 2*an - rn); |
| MPN_INCR_U (rp, rn, cy); |
| } |
| } |
| else |
| mpn_bc_sqrmod_bnm1 (rp, ap, rn, tp); |
| } |
| else |
| { |
| mp_size_t n; |
| mp_limb_t cy; |
| mp_limb_t hi; |
| |
| n = rn >> 1; |
| |
| ASSERT (2*an > n); |
| |
| /* Compute xm = a^2 mod (B^n - 1), xp = a^2 mod (B^n + 1) |
| and crt together as |
| |
| x = -xp * B^n + (B^n + 1) * [ (xp + xm)/2 mod (B^n-1)] |
| */ |
| |
| #define a0 ap |
| #define a1 (ap + n) |
| |
| #define xp tp /* 2n + 2 */ |
| /* am1 maybe in {xp, n} */ |
| #define sp1 (tp + 2*n + 2) |
| /* ap1 maybe in {sp1, n + 1} */ |
| |
| { |
| mp_srcptr am1; |
| mp_size_t anm; |
| mp_ptr so; |
| |
| if (LIKELY (an > n)) |
| { |
| so = xp + n; |
| am1 = xp; |
| cy = mpn_add (xp, a0, n, a1, an - n); |
| MPN_INCR_U (xp, n, cy); |
| anm = n; |
| } |
| else |
| { |
| so = xp; |
| am1 = a0; |
| anm = an; |
| } |
| |
| mpn_sqrmod_bnm1 (rp, n, am1, anm, so); |
| } |
| |
| { |
| int k; |
| mp_srcptr ap1; |
| mp_size_t anp; |
| |
| if (LIKELY (an > n)) { |
| ap1 = sp1; |
| cy = mpn_sub (sp1, a0, n, a1, an - n); |
| sp1[n] = 0; |
| MPN_INCR_U (sp1, n + 1, cy); |
| anp = n + ap1[n]; |
| } else { |
| ap1 = a0; |
| anp = an; |
| } |
| |
| if (BELOW_THRESHOLD (n, MUL_FFT_MODF_THRESHOLD)) |
| k=0; |
| else |
| { |
| int mask; |
| k = mpn_fft_best_k (n, 1); |
| mask = (1<<k) -1; |
| while (n & mask) {k--; mask >>=1;}; |
| } |
| if (k >= FFT_FIRST_K) |
| xp[n] = mpn_mul_fft (xp, n, ap1, anp, ap1, anp, k); |
| else if (UNLIKELY (ap1 == a0)) |
| { |
| ASSERT (anp <= n); |
| ASSERT (2*anp > n); |
| mpn_sqr (xp, a0, an); |
| anp = 2*an - n; |
| cy = mpn_sub (xp, xp, n, xp + n, anp); |
| xp[n] = 0; |
| MPN_INCR_U (xp, n+1, cy); |
| } |
| else |
| mpn_bc_sqrmod_bnp1 (xp, ap1, n, xp); |
| } |
| |
| /* Here the CRT recomposition begins. |
| |
| xm <- (xp + xm)/2 = (xp + xm)B^n/2 mod (B^n-1) |
| Division by 2 is a bitwise rotation. |
| |
| Assumes xp normalised mod (B^n+1). |
| |
| The residue class [0] is represented by [B^n-1]; except when |
| both input are ZERO. |
| */ |
| |
| #if HAVE_NATIVE_mpn_rsh1add_n || HAVE_NATIVE_mpn_rsh1add_nc |
| #if HAVE_NATIVE_mpn_rsh1add_nc |
| cy = mpn_rsh1add_nc(rp, rp, xp, n, xp[n]); /* B^n = 1 */ |
| hi = cy << (GMP_NUMB_BITS - 1); |
| cy = 0; |
| /* next update of rp[n-1] will set cy = 1 only if rp[n-1]+=hi |
| overflows, i.e. a further increment will not overflow again. */ |
| #else /* ! _nc */ |
| cy = xp[n] + mpn_rsh1add_n(rp, rp, xp, n); /* B^n = 1 */ |
| hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ |
| cy >>= 1; |
| /* cy = 1 only if xp[n] = 1 i.e. {xp,n} = ZERO, this implies that |
| the rsh1add was a simple rshift: the top bit is 0. cy=1 => hi=0. */ |
| #endif |
| #if GMP_NAIL_BITS == 0 |
| add_ssaaaa(cy, rp[n-1], cy, rp[n-1], CNST_LIMB(0), hi); |
| #else |
| cy += (hi & rp[n-1]) >> (GMP_NUMB_BITS-1); |
| rp[n-1] ^= hi; |
| #endif |
| #else /* ! HAVE_NATIVE_mpn_rsh1add_n */ |
| #if HAVE_NATIVE_mpn_add_nc |
| cy = mpn_add_nc(rp, rp, xp, n, xp[n]); |
| #else /* ! _nc */ |
| cy = xp[n] + mpn_add_n(rp, rp, xp, n); /* xp[n] == 1 implies {xp,n} == ZERO */ |
| #endif |
| cy += (rp[0]&1); |
| mpn_rshift(rp, rp, n, 1); |
| ASSERT (cy <= 2); |
| hi = (cy<<(GMP_NUMB_BITS-1))&GMP_NUMB_MASK; /* (cy&1) << ... */ |
| cy >>= 1; |
| /* We can have cy != 0 only if hi = 0... */ |
| ASSERT ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0); |
| rp[n-1] |= hi; |
| /* ... rp[n-1] + cy can not overflow, the following INCR is correct. */ |
| #endif |
| ASSERT (cy <= 1); |
| /* Next increment can not overflow, read the previous comments about cy. */ |
| ASSERT ((cy == 0) || ((rp[n-1] & GMP_NUMB_HIGHBIT) == 0)); |
| MPN_INCR_U(rp, n, cy); |
| |
| /* Compute the highest half: |
| ([(xp + xm)/2 mod (B^n-1)] - xp ) * B^n |
| */ |
| if (UNLIKELY (2*an < rn)) |
| { |
| /* Note that in this case, the only way the result can equal |
| zero mod B^{rn} - 1 is if the input is zero, and |
| then the output of both the recursive calls and this CRT |
| reconstruction is zero, not B^{rn} - 1. */ |
| cy = mpn_sub_n (rp + n, rp, xp, 2*an - n); |
| |
| /* FIXME: This subtraction of the high parts is not really |
| necessary, we do it to get the carry out, and for sanity |
| checking. */ |
| cy = xp[n] + mpn_sub_nc (xp + 2*an - n, rp + 2*an - n, |
| xp + 2*an - n, rn - 2*an, cy); |
| ASSERT (mpn_zero_p (xp + 2*an - n+1, rn - 1 - 2*an)); |
| cy = mpn_sub_1 (rp, rp, 2*an, cy); |
| ASSERT (cy == (xp + 2*an - n)[0]); |
| } |
| else |
| { |
| cy = xp[n] + mpn_sub_n (rp + n, rp, xp, n); |
| /* cy = 1 only if {xp,n+1} is not ZERO, i.e. {rp,n} is not ZERO. |
| DECR will affect _at most_ the lowest n limbs. */ |
| MPN_DECR_U (rp, 2*n, cy); |
| } |
| #undef a0 |
| #undef a1 |
| #undef xp |
| #undef sp1 |
| } |
| } |
| |
| mp_size_t |
| mpn_sqrmod_bnm1_next_size (mp_size_t n) |
| { |
| mp_size_t nh; |
| |
| if (BELOW_THRESHOLD (n, SQRMOD_BNM1_THRESHOLD)) |
| return n; |
| if (BELOW_THRESHOLD (n, 4 * (SQRMOD_BNM1_THRESHOLD - 1) + 1)) |
| return (n + (2-1)) & (-2); |
| if (BELOW_THRESHOLD (n, 8 * (SQRMOD_BNM1_THRESHOLD - 1) + 1)) |
| return (n + (4-1)) & (-4); |
| |
| nh = (n + 1) >> 1; |
| |
| if (BELOW_THRESHOLD (nh, SQR_FFT_MODF_THRESHOLD)) |
| return (n + (8-1)) & (-8); |
| |
| return 2 * mpn_fft_next_size (nh, mpn_fft_best_k (nh, 1)); |
| } |