| /* matrix22_mul.c. |
| |
| Contributed by Niels Möller and Marco Bodrato. |
| |
| THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
| SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
| GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2003-2005, 2008, 2009 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| #define MUL(rp, ap, an, bp, bn) do { \ |
| if (an >= bn) \ |
| mpn_mul (rp, ap, an, bp, bn); \ |
| else \ |
| mpn_mul (rp, bp, bn, ap, an); \ |
| } while (0) |
| |
| /* Inputs are unsigned. */ |
| static int |
| abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n) |
| { |
| int c; |
| MPN_CMP (c, ap, bp, n); |
| if (c >= 0) |
| { |
| mpn_sub_n (rp, ap, bp, n); |
| return 0; |
| } |
| else |
| { |
| mpn_sub_n (rp, bp, ap, n); |
| return 1; |
| } |
| } |
| |
| static int |
| add_signed_n (mp_ptr rp, |
| mp_srcptr ap, int as, mp_srcptr bp, int bs, mp_size_t n) |
| { |
| if (as != bs) |
| return as ^ abs_sub_n (rp, ap, bp, n); |
| else |
| { |
| ASSERT_NOCARRY (mpn_add_n (rp, ap, bp, n)); |
| return as; |
| } |
| } |
| |
| mp_size_t |
| mpn_matrix22_mul_itch (mp_size_t rn, mp_size_t mn) |
| { |
| if (BELOW_THRESHOLD (rn, MATRIX22_STRASSEN_THRESHOLD) |
| || BELOW_THRESHOLD (mn, MATRIX22_STRASSEN_THRESHOLD)) |
| return 3*rn + 2*mn; |
| else |
| return 3*(rn + mn) + 5; |
| } |
| |
| /* Algorithm: |
| |
| / s0 \ / 1 0 0 0 \ / r0 \ |
| | s1 | | 0 1 0 1 | | r1 | |
| | s2 | | 0 0 -1 1 | | r2 | |
| | s3 | = | 0 1 -1 1 | \ r3 / |
| | s4 | | -1 1 -1 1 | |
| | s5 | | 0 1 0 0 | |
| \ s6 / \ 0 0 1 0 / |
| |
| / t0 \ / 1 0 0 0 \ / m0 \ |
| | t1 | | 0 1 0 1 | | m1 | |
| | t2 | | 0 0 -1 1 | | m2 | |
| | t3 | = | 0 1 -1 1 | \ m3 / |
| | t4 | | -1 1 -1 1 | |
| | t5 | | 0 1 0 0 | |
| \ t6 / \ 0 0 1 0 / |
| |
| Note: the two matrices above are the same, but s_i and t_i are used |
| in the same product, only for i<4, see "A Strassen-like Matrix |
| Multiplication suited for squaring and higher power computation" by |
| M. Bodrato, in Proceedings of ISSAC 2010. |
| |
| / r0 \ / 1 0 0 0 0 1 0 \ / s0*t0 \ |
| | r1 | = | 0 0 -1 1 -1 1 0 | | s1*t1 | |
| | r2 | | 0 1 0 -1 0 -1 -1 | | s2*t2 | |
| \ r3 / \ 0 1 1 -1 0 -1 0 / | s3*t3 | |
| | s4*t5 | |
| | s5*t6 | |
| \ s6*t4 / |
| |
| The scheduling uses two temporaries U0 and U1 to store products, and |
| two, S0 and T0, to store combinations of entries of the two |
| operands. |
| */ |
| |
| /* Computes R = R * M. Elements are numbers R = (r0, r1; r2, r3). |
| * |
| * Resulting elements are of size up to rn + mn + 1. |
| * |
| * Temporary storage: 3 rn + 3 mn + 5. */ |
| static void |
| mpn_matrix22_mul_strassen (mp_ptr r0, mp_ptr r1, mp_ptr r2, mp_ptr r3, mp_size_t rn, |
| mp_srcptr m0, mp_srcptr m1, mp_srcptr m2, mp_srcptr m3, mp_size_t mn, |
| mp_ptr tp) |
| { |
| mp_ptr s0, t0, u0, u1; |
| int r1s, r3s, s0s, t0s, u1s; |
| s0 = tp; tp += rn + 1; |
| t0 = tp; tp += mn + 1; |
| u0 = tp; tp += rn + mn + 1; |
| u1 = tp; /* rn + mn + 2 */ |
| |
| MUL (u0, r1, rn, m2, mn); /* u5 = s5 * t6 */ |
| r3s = abs_sub_n (r3, r3, r2, rn); /* r3 - r2 */ |
| if (r3s) |
| { |
| r1s = abs_sub_n (r1, r1, r3, rn); |
| r1[rn] = 0; |
| } |
| else |
| { |
| r1[rn] = mpn_add_n (r1, r1, r3, rn); |
| r1s = 0; /* r1 - r2 + r3 */ |
| } |
| if (r1s) |
| { |
| s0[rn] = mpn_add_n (s0, r1, r0, rn); |
| s0s = 0; |
| } |
| else if (r1[rn] != 0) |
| { |
| s0[rn] = r1[rn] - mpn_sub_n (s0, r1, r0, rn); |
| s0s = 1; /* s4 = -r0 + r1 - r2 + r3 */ |
| /* Reverse sign! */ |
| } |
| else |
| { |
| s0s = abs_sub_n (s0, r0, r1, rn); |
| s0[rn] = 0; |
| } |
| MUL (u1, r0, rn, m0, mn); /* u0 = s0 * t0 */ |
| r0[rn+mn] = mpn_add_n (r0, u0, u1, rn + mn); |
| ASSERT (r0[rn+mn] < 2); /* u0 + u5 */ |
| |
| t0s = abs_sub_n (t0, m3, m2, mn); |
| u1s = r3s^t0s^1; /* Reverse sign! */ |
| MUL (u1, r3, rn, t0, mn); /* u2 = s2 * t2 */ |
| u1[rn+mn] = 0; |
| if (t0s) |
| { |
| t0s = abs_sub_n (t0, m1, t0, mn); |
| t0[mn] = 0; |
| } |
| else |
| { |
| t0[mn] = mpn_add_n (t0, t0, m1, mn); |
| } |
| |
| /* FIXME: Could be simplified if we had space for rn + mn + 2 limbs |
| at r3. I'd expect that for matrices of random size, the high |
| words t0[mn] and r1[rn] are non-zero with a pretty small |
| probability. If that can be confirmed this should be done as an |
| unconditional rn x (mn+1) followed by an if (UNLIKELY (r1[rn])) |
| add_n. */ |
| if (t0[mn] != 0) |
| { |
| MUL (r3, r1, rn, t0, mn + 1); /* u3 = s3 * t3 */ |
| ASSERT (r1[rn] < 2); |
| if (r1[rn] != 0) |
| mpn_add_n (r3 + rn, r3 + rn, t0, mn + 1); |
| } |
| else |
| { |
| MUL (r3, r1, rn + 1, t0, mn); |
| } |
| |
| ASSERT (r3[rn+mn] < 4); |
| |
| u0[rn+mn] = 0; |
| if (r1s^t0s) |
| { |
| r3s = abs_sub_n (r3, u0, r3, rn + mn + 1); |
| } |
| else |
| { |
| ASSERT_NOCARRY (mpn_add_n (r3, r3, u0, rn + mn + 1)); |
| r3s = 0; /* u3 + u5 */ |
| } |
| |
| if (t0s) |
| { |
| t0[mn] = mpn_add_n (t0, t0, m0, mn); |
| } |
| else if (t0[mn] != 0) |
| { |
| t0[mn] -= mpn_sub_n (t0, t0, m0, mn); |
| } |
| else |
| { |
| t0s = abs_sub_n (t0, t0, m0, mn); |
| } |
| MUL (u0, r2, rn, t0, mn + 1); /* u6 = s6 * t4 */ |
| ASSERT (u0[rn+mn] < 2); |
| if (r1s) |
| { |
| ASSERT_NOCARRY (mpn_sub_n (r1, r2, r1, rn)); |
| } |
| else |
| { |
| r1[rn] += mpn_add_n (r1, r1, r2, rn); |
| } |
| rn++; |
| t0s = add_signed_n (r2, r3, r3s, u0, t0s, rn + mn); |
| /* u3 + u5 + u6 */ |
| ASSERT (r2[rn+mn-1] < 4); |
| r3s = add_signed_n (r3, r3, r3s, u1, u1s, rn + mn); |
| /* -u2 + u3 + u5 */ |
| ASSERT (r3[rn+mn-1] < 3); |
| MUL (u0, s0, rn, m1, mn); /* u4 = s4 * t5 */ |
| ASSERT (u0[rn+mn-1] < 2); |
| t0[mn] = mpn_add_n (t0, m3, m1, mn); |
| MUL (u1, r1, rn, t0, mn + 1); /* u1 = s1 * t1 */ |
| mn += rn; |
| ASSERT (u1[mn-1] < 4); |
| ASSERT (u1[mn] == 0); |
| ASSERT_NOCARRY (add_signed_n (r1, r3, r3s, u0, s0s, mn)); |
| /* -u2 + u3 - u4 + u5 */ |
| ASSERT (r1[mn-1] < 2); |
| if (r3s) |
| { |
| ASSERT_NOCARRY (mpn_add_n (r3, u1, r3, mn)); |
| } |
| else |
| { |
| ASSERT_NOCARRY (mpn_sub_n (r3, u1, r3, mn)); |
| /* u1 + u2 - u3 - u5 */ |
| } |
| ASSERT (r3[mn-1] < 2); |
| if (t0s) |
| { |
| ASSERT_NOCARRY (mpn_add_n (r2, u1, r2, mn)); |
| } |
| else |
| { |
| ASSERT_NOCARRY (mpn_sub_n (r2, u1, r2, mn)); |
| /* u1 - u3 - u5 - u6 */ |
| } |
| ASSERT (r2[mn-1] < 2); |
| } |
| |
| void |
| mpn_matrix22_mul (mp_ptr r0, mp_ptr r1, mp_ptr r2, mp_ptr r3, mp_size_t rn, |
| mp_srcptr m0, mp_srcptr m1, mp_srcptr m2, mp_srcptr m3, mp_size_t mn, |
| mp_ptr tp) |
| { |
| if (BELOW_THRESHOLD (rn, MATRIX22_STRASSEN_THRESHOLD) |
| || BELOW_THRESHOLD (mn, MATRIX22_STRASSEN_THRESHOLD)) |
| { |
| mp_ptr p0, p1; |
| unsigned i; |
| |
| /* Temporary storage: 3 rn + 2 mn */ |
| p0 = tp + rn; |
| p1 = p0 + rn + mn; |
| |
| for (i = 0; i < 2; i++) |
| { |
| MPN_COPY (tp, r0, rn); |
| |
| if (rn >= mn) |
| { |
| mpn_mul (p0, r0, rn, m0, mn); |
| mpn_mul (p1, r1, rn, m3, mn); |
| mpn_mul (r0, r1, rn, m2, mn); |
| mpn_mul (r1, tp, rn, m1, mn); |
| } |
| else |
| { |
| mpn_mul (p0, m0, mn, r0, rn); |
| mpn_mul (p1, m3, mn, r1, rn); |
| mpn_mul (r0, m2, mn, r1, rn); |
| mpn_mul (r1, m1, mn, tp, rn); |
| } |
| r0[rn+mn] = mpn_add_n (r0, r0, p0, rn + mn); |
| r1[rn+mn] = mpn_add_n (r1, r1, p1, rn + mn); |
| |
| r0 = r2; r1 = r3; |
| } |
| } |
| else |
| mpn_matrix22_mul_strassen (r0, r1, r2, r3, rn, |
| m0, m1, m2, m3, mn, tp); |
| } |