| /* mpn_toom52_mul -- Multiply {ap,an} and {bp,bn} where an is nominally 4/3 |
| times as large as bn. Or more accurately, bn < an < 2 bn. |
| |
| Contributed to the GNU project by Marco Bodrato. |
| |
| The idea of applying toom to unbalanced multiplication is due to Marco |
| Bodrato and Alberto Zanoni. |
| |
| THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY |
| SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
| GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2009 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| |
| #include "gmp-impl.h" |
| |
| /* Evaluate in: -2, -1, 0, +1, +2, +inf |
| |
| <-s-><--n--><--n--><--n--><--n--> |
| ___ ______ ______ ______ ______ |
| |a4_|___a3_|___a2_|___a1_|___a0_| |
| |b1|___b0_| |
| <t-><--n--> |
| |
| v0 = a0 * b0 # A(0)*B(0) |
| v1 = (a0+ a1+ a2+ a3+ a4)*(b0+ b1) # A(1)*B(1) ah <= 4 bh <= 1 |
| vm1 = (a0- a1+ a2- a3+ a4)*(b0- b1) # A(-1)*B(-1) |ah| <= 2 bh = 0 |
| v2 = (a0+2a1+4a2+8a3+16a4)*(b0+2b1) # A(2)*B(2) ah <= 30 bh <= 2 |
| vm2 = (a0-2a1+4a2-8a3+16a4)*(b0-2b1) # A(-2)*B(-2) |ah| <= 20 |bh|<= 1 |
| vinf= a4 * b1 # A(inf)*B(inf) |
| |
| Some slight optimization in evaluation are taken from the paper: |
| "Towards Optimal Toom-Cook Multiplication for Univariate and |
| Multivariate Polynomials in Characteristic 2 and 0." |
| */ |
| |
| void |
| mpn_toom52_mul (mp_ptr pp, |
| mp_srcptr ap, mp_size_t an, |
| mp_srcptr bp, mp_size_t bn, mp_ptr scratch) |
| { |
| mp_size_t n, s, t; |
| enum toom6_flags flags; |
| |
| #define a0 ap |
| #define a1 (ap + n) |
| #define a2 (ap + 2 * n) |
| #define a3 (ap + 3 * n) |
| #define a4 (ap + 4 * n) |
| #define b0 bp |
| #define b1 (bp + n) |
| |
| n = 1 + (2 * an >= 5 * bn ? (an - 1) / (size_t) 5 : (bn - 1) >> 1); |
| |
| s = an - 4 * n; |
| t = bn - n; |
| |
| ASSERT (0 < s && s <= n); |
| ASSERT (0 < t && t <= n); |
| |
| /* Ensures that 5 values of n+1 limbs each fits in the product area. |
| Borderline cases are an = 32, bn = 8, n = 7, and an = 36, bn = 9, |
| n = 8. */ |
| ASSERT (s+t >= 5); |
| |
| #define v0 pp /* 2n */ |
| #define vm1 (scratch) /* 2n+1 */ |
| #define v1 (pp + 2 * n) /* 2n+1 */ |
| #define vm2 (scratch + 2 * n + 1) /* 2n+1 */ |
| #define v2 (scratch + 4 * n + 2) /* 2n+1 */ |
| #define vinf (pp + 5 * n) /* s+t */ |
| #define bs1 pp /* n+1 */ |
| #define bsm1 (scratch + 2 * n + 2) /* n */ |
| #define asm1 (scratch + 3 * n + 3) /* n+1 */ |
| #define asm2 (scratch + 4 * n + 4) /* n+1 */ |
| #define bsm2 (pp + n + 1) /* n+1 */ |
| #define bs2 (pp + 2 * n + 2) /* n+1 */ |
| #define as2 (pp + 3 * n + 3) /* n+1 */ |
| #define as1 (pp + 4 * n + 4) /* n+1 */ |
| |
| /* Scratch need is 6 * n + 3 + 1. We need one extra limb, because |
| products will overwrite 2n+2 limbs. */ |
| |
| #define a0a2 scratch |
| #define a1a3 asm1 |
| |
| /* Compute as2 and asm2. */ |
| flags = (enum toom6_flags) (toom6_vm2_neg & mpn_toom_eval_pm2 (as2, asm2, 4, ap, n, s, a1a3)); |
| |
| /* Compute bs1 and bsm1. */ |
| if (t == n) |
| { |
| #if HAVE_NATIVE_mpn_add_n_sub_n |
| mp_limb_t cy; |
| |
| if (mpn_cmp (b0, b1, n) < 0) |
| { |
| cy = mpn_add_n_sub_n (bs1, bsm1, b1, b0, n); |
| flags = (enum toom6_flags) (flags ^ toom6_vm1_neg); |
| } |
| else |
| { |
| cy = mpn_add_n_sub_n (bs1, bsm1, b0, b1, n); |
| } |
| bs1[n] = cy >> 1; |
| #else |
| bs1[n] = mpn_add_n (bs1, b0, b1, n); |
| if (mpn_cmp (b0, b1, n) < 0) |
| { |
| mpn_sub_n (bsm1, b1, b0, n); |
| flags = (enum toom6_flags) (flags ^ toom6_vm1_neg); |
| } |
| else |
| { |
| mpn_sub_n (bsm1, b0, b1, n); |
| } |
| #endif |
| } |
| else |
| { |
| bs1[n] = mpn_add (bs1, b0, n, b1, t); |
| if (mpn_zero_p (b0 + t, n - t) && mpn_cmp (b0, b1, t) < 0) |
| { |
| mpn_sub_n (bsm1, b1, b0, t); |
| MPN_ZERO (bsm1 + t, n - t); |
| flags = (enum toom6_flags) (flags ^ toom6_vm1_neg); |
| } |
| else |
| { |
| mpn_sub (bsm1, b0, n, b1, t); |
| } |
| } |
| |
| /* Compute bs2 and bsm2, recycling bs1 and bsm1. bs2=bs1+b1; bsm2=bsm1-b1 */ |
| mpn_add (bs2, bs1, n+1, b1, t); |
| if (flags & toom6_vm1_neg) |
| { |
| bsm2[n] = mpn_add (bsm2, bsm1, n, b1, t); |
| flags = (enum toom6_flags) (flags ^ toom6_vm2_neg); |
| } |
| else |
| { |
| bsm2[n] = 0; |
| if (t == n) |
| { |
| if (mpn_cmp (bsm1, b1, n) < 0) |
| { |
| mpn_sub_n (bsm2, b1, bsm1, n); |
| flags = (enum toom6_flags) (flags ^ toom6_vm2_neg); |
| } |
| else |
| { |
| mpn_sub_n (bsm2, bsm1, b1, n); |
| } |
| } |
| else |
| { |
| if (mpn_zero_p (bsm1 + t, n - t) && mpn_cmp (bsm1, b1, t) < 0) |
| { |
| mpn_sub_n (bsm2, b1, bsm1, t); |
| MPN_ZERO (bsm2 + t, n - t); |
| flags = (enum toom6_flags) (flags ^ toom6_vm2_neg); |
| } |
| else |
| { |
| mpn_sub (bsm2, bsm1, n, b1, t); |
| } |
| } |
| } |
| |
| /* Compute as1 and asm1. */ |
| flags = (enum toom6_flags) (flags ^ (toom6_vm1_neg & mpn_toom_eval_pm1 (as1, asm1, 4, ap, n, s, a0a2))); |
| |
| ASSERT (as1[n] <= 4); |
| ASSERT (bs1[n] <= 1); |
| ASSERT (asm1[n] <= 2); |
| /* ASSERT (bsm1[n] <= 1); */ |
| ASSERT (as2[n] <=30); |
| ASSERT (bs2[n] <= 2); |
| ASSERT (asm2[n] <= 20); |
| ASSERT (bsm2[n] <= 1); |
| |
| /* vm1, 2n+1 limbs */ |
| mpn_mul (vm1, asm1, n+1, bsm1, n); /* W4 */ |
| |
| /* vm2, 2n+1 limbs */ |
| mpn_mul_n (vm2, asm2, bsm2, n+1); /* W2 */ |
| |
| /* v2, 2n+1 limbs */ |
| mpn_mul_n (v2, as2, bs2, n+1); /* W1 */ |
| |
| /* v1, 2n+1 limbs */ |
| mpn_mul_n (v1, as1, bs1, n+1); /* W3 */ |
| |
| /* vinf, s+t limbs */ /* W0 */ |
| if (s > t) mpn_mul (vinf, a4, s, b1, t); |
| else mpn_mul (vinf, b1, t, a4, s); |
| |
| /* v0, 2n limbs */ |
| mpn_mul_n (v0, ap, bp, n); /* W5 */ |
| |
| mpn_toom_interpolate_6pts (pp, n, flags, vm1, vm2, v2, t + s); |
| |
| #undef v0 |
| #undef vm1 |
| #undef v1 |
| #undef vm2 |
| #undef v2 |
| #undef vinf |
| #undef bs1 |
| #undef bs2 |
| #undef bsm1 |
| #undef bsm2 |
| #undef asm1 |
| #undef asm2 |
| #undef as1 |
| #undef as2 |
| #undef a0a2 |
| #undef b0b2 |
| #undef a1a3 |
| #undef a0 |
| #undef a1 |
| #undef a2 |
| #undef a3 |
| #undef b0 |
| #undef b1 |
| #undef b2 |
| |
| } |