| /* mpn_toom_interpolate_8pts -- Interpolate for toom54, 63, 72. |
| |
| Contributed to the GNU project by Marco Bodrato. |
| |
| THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE. IT IS ONLY |
| SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
| GUARANTEED THAT IT WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2009, 2011, 2012 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include "gmp-impl.h" |
| |
| #define BINVERT_3 MODLIMB_INVERSE_3 |
| |
| #define BINVERT_15 \ |
| ((((GMP_NUMB_MAX >> (GMP_NUMB_BITS % 4)) / 15) * 14 * 16 & GMP_NUMB_MAX) + 15) |
| |
| #define BINVERT_45 ((BINVERT_15 * BINVERT_3) & GMP_NUMB_MASK) |
| |
| #ifndef mpn_divexact_by3 |
| #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 |
| #define mpn_divexact_by3(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,3,BINVERT_3,0) |
| #else |
| #define mpn_divexact_by3(dst,src,size) mpn_divexact_1(dst,src,size,3) |
| #endif |
| #endif |
| |
| #ifndef mpn_divexact_by45 |
| #if GMP_NUMB_BITS % 12 == 0 |
| #define mpn_divexact_by45(dst,src,size) \ |
| (63 & 19 * mpn_bdiv_dbm1 (dst, src, size, __GMP_CAST (mp_limb_t, GMP_NUMB_MASK / 45))) |
| #else |
| #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 |
| #define mpn_divexact_by45(dst,src,size) mpn_pi1_bdiv_q_1(dst,src,size,45,BINVERT_45,0) |
| #else |
| #define mpn_divexact_by45(dst,src,size) mpn_divexact_1(dst,src,size,45) |
| #endif |
| #endif |
| #endif |
| |
| #if HAVE_NATIVE_mpn_sublsh2_n_ip1 |
| #define DO_mpn_sublsh2_n(dst,src,n,ws) mpn_sublsh2_n_ip1(dst,src,n) |
| #else |
| #define DO_mpn_sublsh2_n(dst,src,n,ws) DO_mpn_sublsh_n(dst,src,n,2,ws) |
| #endif |
| |
| #if HAVE_NATIVE_mpn_sublsh_n |
| #define DO_mpn_sublsh_n(dst,src,n,s,ws) mpn_sublsh_n (dst,dst,src,n,s) |
| #else |
| static mp_limb_t |
| DO_mpn_sublsh_n (mp_ptr dst, mp_srcptr src, mp_size_t n, unsigned int s, mp_ptr ws) |
| { |
| #if USE_MUL_1 && 0 |
| return mpn_submul_1(dst,src,n,CNST_LIMB(1) <<(s)); |
| #else |
| mp_limb_t __cy; |
| __cy = mpn_lshift (ws,src,n,s); |
| return __cy + mpn_sub_n (dst,dst,ws,n); |
| #endif |
| } |
| #endif |
| |
| |
| #if HAVE_NATIVE_mpn_subrsh |
| #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) mpn_subrsh (dst,nd,src,ns,s) |
| #else |
| /* This is not a correct definition, it assumes no carry */ |
| #define DO_mpn_subrsh(dst,nd,src,ns,s,ws) \ |
| do { \ |
| mp_limb_t __cy; \ |
| MPN_DECR_U (dst, nd, src[0] >> s); \ |
| __cy = DO_mpn_sublsh_n (dst, src + 1, ns - 1, GMP_NUMB_BITS - s, ws); \ |
| MPN_DECR_U (dst + ns - 1, nd - ns + 1, __cy); \ |
| } while (0) |
| #endif |
| |
| /* Interpolation for Toom-4.5 (or Toom-4), using the evaluation |
| points: infinity(4.5 only), 4, -4, 2, -2, 1, -1, 0. More precisely, |
| we want to compute f(2^(GMP_NUMB_BITS * n)) for a polynomial f of |
| degree 7 (or 6), given the 8 (rsp. 7) values: |
| |
| r1 = limit at infinity of f(x) / x^7, |
| r2 = f(4), |
| r3 = f(-4), |
| r4 = f(2), |
| r5 = f(-2), |
| r6 = f(1), |
| r7 = f(-1), |
| r8 = f(0). |
| |
| All couples of the form f(n),f(-n) must be already mixed with |
| toom_couple_handling(f(n),...,f(-n),...) |
| |
| The result is stored in {pp, spt + 7*n (or 6*n)}. |
| At entry, r8 is stored at {pp, 2n}, |
| r5 is stored at {pp + 3n, 3n + 1}. |
| |
| The other values are 2n+... limbs each (with most significant limbs small). |
| |
| All intermediate results are positive. |
| Inputs are destroyed. |
| */ |
| |
| void |
| mpn_toom_interpolate_8pts (mp_ptr pp, mp_size_t n, |
| mp_ptr r3, mp_ptr r7, |
| mp_size_t spt, mp_ptr ws) |
| { |
| mp_limb_signed_t cy; |
| mp_ptr r5, r1; |
| r5 = (pp + 3 * n); /* 3n+1 */ |
| r1 = (pp + 7 * n); /* spt */ |
| |
| /******************************* interpolation *****************************/ |
| |
| DO_mpn_subrsh(r3+n, 2 * n + 1, pp, 2 * n, 4, ws); |
| cy = DO_mpn_sublsh_n (r3, r1, spt, 12, ws); |
| MPN_DECR_U (r3 + spt, 3 * n + 1 - spt, cy); |
| |
| DO_mpn_subrsh(r5+n, 2 * n + 1, pp, 2 * n, 2, ws); |
| cy = DO_mpn_sublsh_n (r5, r1, spt, 6, ws); |
| MPN_DECR_U (r5 + spt, 3 * n + 1 - spt, cy); |
| |
| r7[3*n] -= mpn_sub_n (r7+n, r7+n, pp, 2 * n); |
| cy = mpn_sub_n (r7, r7, r1, spt); |
| MPN_DECR_U (r7 + spt, 3 * n + 1 - spt, cy); |
| |
| ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1)); |
| ASSERT_NOCARRY(mpn_rshift(r3, r3, 3 * n + 1, 2)); |
| |
| ASSERT_NOCARRY(mpn_sub_n (r5, r5, r7, 3 * n + 1)); |
| |
| ASSERT_NOCARRY(mpn_sub_n (r3, r3, r5, 3 * n + 1)); |
| |
| mpn_divexact_by45 (r3, r3, 3 * n + 1); |
| |
| ASSERT_NOCARRY(mpn_divexact_by3 (r5, r5, 3 * n + 1)); |
| |
| ASSERT_NOCARRY(DO_mpn_sublsh2_n (r5, r3, 3 * n + 1, ws)); |
| |
| /* last interpolation steps... */ |
| /* ... are mixed with recomposition */ |
| |
| /***************************** recomposition *******************************/ |
| /* |
| pp[] prior to operations: |
| |_H r1|_L r1|____||_H r5|_M_r5|_L r5|_____|_H r8|_L r8|pp |
| |
| summation scheme for remaining operations: |
| |____8|n___7|n___6|n___5|n___4|n___3|n___2|n____|n____|pp |
| |_H r1|_L r1|____||_H*r5|_M r5|_L r5|_____|_H_r8|_L r8|pp |
| ||_H r3|_M r3|_L*r3| |
| ||_H_r7|_M_r7|_L_r7| |
| ||-H r3|-M r3|-L*r3| |
| ||-H*r5|-M_r5|-L_r5| |
| */ |
| |
| cy = mpn_add_n (pp + n, pp + n, r7, n); /* Hr8+Lr7-Lr5 */ |
| cy-= mpn_sub_n (pp + n, pp + n, r5, n); |
| if (cy > 0) { |
| MPN_INCR_U (r7 + n, 2*n + 1, 1); |
| cy = 0; |
| } |
| |
| cy = mpn_sub_nc (pp + 2*n, r7 + n, r5 + n, n, -cy); /* Mr7-Mr5 */ |
| MPN_DECR_U (r7 + 2*n, n + 1, cy); |
| |
| cy = mpn_add_n (pp + 3*n, r5, r7+ 2*n, n+1); /* Hr7+Lr5 */ |
| r5[3*n]+= mpn_add_n (r5 + 2*n, r5 + 2*n, r3, n); /* Hr5+Lr3 */ |
| cy-= mpn_sub_n (pp + 3*n, pp + 3*n, r5 + 2*n, n+1); /* Hr7-Hr5+Lr5-Lr3 */ |
| if (UNLIKELY(0 > cy)) |
| MPN_DECR_U (r5 + n + 1, 2*n, 1); |
| else |
| MPN_INCR_U (r5 + n + 1, 2*n, cy); |
| |
| ASSERT_NOCARRY(mpn_sub_n(pp + 4*n, r5 + n, r3 + n, 2*n +1)); /* Mr5-Mr3,Hr5-Hr3 */ |
| |
| cy = mpn_add_1 (pp + 6*n, r3 + n, n, pp[6*n]); |
| MPN_INCR_U (r3 + 2*n, n + 1, cy); |
| cy = mpn_add_n (pp + 7*n, pp + 7*n, r3 + 2*n, n); |
| if (LIKELY(spt != n)) |
| MPN_INCR_U (pp + 8*n, spt - n, cy + r3[3*n]); |
| else |
| ASSERT (r3[3*n] + cy == 0); |
| } |