blob: 88580f1f2c1d38a9434457771b397672a29bf449 [file] [log] [blame]
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package hcl2shim
import (
"fmt"
"math/big"
"github.com/hashicorp/packer-plugin-sdk/hcl2helper"
"github.com/zclconf/go-cty/cty"
)
// ConfigValueFromHCL2 converts a value from HCL2 (really, from the cty dynamic
// types library that HCL2 uses) to a value type that matches what would've
// been produced from the HCL-based interpolator for an equivalent structure.
//
// This function will transform a cty null value into a Go nil value, which
// isn't a possible outcome of the HCL/HIL-based decoder and so callers may
// need to detect and reject any null values.
func ConfigValueFromHCL2(v cty.Value) interface{} {
if !v.IsKnown() {
return hcl2helper.UnknownVariableValue
}
if v.IsNull() {
return nil
}
switch v.Type() {
case cty.Bool:
return v.True() // like HCL.BOOL
case cty.String:
return v.AsString() // like HCL token.STRING or token.HEREDOC
case cty.Number:
// We can't match HCL _exactly_ here because it distinguishes between
// int and float values, but we'll get as close as we can by using
// an int if the number is exactly representable, and a float if not.
// The conversion to float will force precision to that of a float64,
// which is potentially losing information from the specific number
// given, but no worse than what HCL would've done in its own conversion
// to float.
f := v.AsBigFloat()
if i, acc := f.Int64(); acc == big.Exact {
// if we're on a 32-bit system and the number is too big for 32-bit
// int then we'll fall through here and use a float64.
const MaxInt = int(^uint(0) >> 1)
const MinInt = -MaxInt - 1
if i <= int64(MaxInt) && i >= int64(MinInt) {
return int(i) // Like HCL token.NUMBER
}
}
f64, _ := f.Float64()
return f64 // like HCL token.FLOAT
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]interface{}, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
l = append(l, ConfigValueFromHCL2(ev))
}
return l
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]interface{})
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
cv := ConfigValueFromHCL2(ev)
if cv != nil {
l[ek.AsString()] = cv
}
}
return l
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to config value", v))
}
// WriteUnknownPlaceholderValues will replace every Unknown value with a equivalent placeholder.
// This is useful to use before marshaling the value to JSON. The default values are:
// - string: "<unknown>"
// - number: 0
// - bool: false
// - objects/lists/tuples/sets/maps: empty
func WriteUnknownPlaceholderValues(v cty.Value) cty.Value {
if v.IsNull() {
return v
}
t := v.Type()
switch {
case t.IsPrimitiveType():
if v.IsKnown() {
return v
}
switch t {
case cty.String:
return cty.StringVal("<unknown>")
case cty.Number:
return cty.MustParseNumberVal("0")
case cty.Bool:
return cty.BoolVal(false)
default:
panic("unsupported primitive type")
}
case t.IsListType():
if !v.IsKnown() {
return cty.ListValEmpty(t.ElementType())
}
arr := []cty.Value{}
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
arr = append(arr, WriteUnknownPlaceholderValues(ev))
}
if len(arr) == 0 {
return cty.ListValEmpty(t.ElementType())
}
return cty.ListVal(arr)
case t.IsSetType():
if !v.IsKnown() {
return cty.SetValEmpty(t.ElementType())
}
arr := []cty.Value{}
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
arr = append(arr, WriteUnknownPlaceholderValues(ev))
}
if len(arr) == 0 {
return cty.SetValEmpty(t.ElementType())
}
return cty.SetVal(arr)
case t.IsMapType():
if !v.IsKnown() {
return cty.MapValEmpty(t.ElementType())
}
obj := map[string]cty.Value{}
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
obj[ek.AsString()] = WriteUnknownPlaceholderValues(ev)
}
if len(obj) == 0 {
return cty.MapValEmpty(t.ElementType())
}
return cty.MapVal(obj)
case t.IsTupleType():
if !v.IsKnown() {
return cty.EmptyTupleVal
}
arr := []cty.Value{}
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
arr = append(arr, WriteUnknownPlaceholderValues(ev))
}
if len(arr) == 0 {
return cty.EmptyTupleVal
}
return cty.TupleVal(arr)
case t.IsObjectType():
if !v.IsKnown() {
return cty.EmptyObjectVal
}
obj := map[string]cty.Value{}
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
obj[ek.AsString()] = WriteUnknownPlaceholderValues(ev)
}
if len(obj) == 0 {
return cty.EmptyObjectVal
}
return cty.ObjectVal(obj)
default:
// should never happen
panic("unknown type")
}
}