blob: a8882812665ecfabee5a4f67d2f747ce1669afe9 [file] [log] [blame]
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package raft
import (
"bytes"
"context"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
"github.com/golang/protobuf/proto"
log "github.com/hashicorp/go-hclog"
"github.com/hashicorp/go-multierror"
"github.com/hashicorp/go-raftchunking"
"github.com/hashicorp/go-secure-stdlib/strutil"
"github.com/hashicorp/raft"
"github.com/hashicorp/vault/sdk/helper/jsonutil"
"github.com/hashicorp/vault/sdk/physical"
"github.com/hashicorp/vault/sdk/plugin/pb"
bolt "go.etcd.io/bbolt"
)
const (
deleteOp uint32 = 1 << iota
putOp
restoreCallbackOp
getOp
chunkingPrefix = "raftchunking/"
databaseFilename = "vault.db"
)
var (
// dataBucketName is the value we use for the bucket
dataBucketName = []byte("data")
configBucketName = []byte("config")
latestIndexKey = []byte("latest_indexes")
latestConfigKey = []byte("latest_config")
localNodeConfigKey = []byte("local_node_config")
)
// Verify FSM satisfies the correct interfaces
var (
_ physical.Backend = (*FSM)(nil)
_ physical.Transactional = (*FSM)(nil)
_ raft.FSM = (*FSM)(nil)
_ raft.BatchingFSM = (*FSM)(nil)
)
type restoreCallback func(context.Context) error
type FSMEntry struct {
Key string
Value []byte
}
func (f *FSMEntry) String() string {
return fmt.Sprintf("Key: %s. Value: %s", f.Key, hex.EncodeToString(f.Value))
}
// FSMApplyResponse is returned from an FSM apply. It indicates if the apply was
// successful or not. EntryMap contains the keys/values from the Get operations.
type FSMApplyResponse struct {
Success bool
EntrySlice []*FSMEntry
}
// FSM is Vault's primary state storage. It writes updates to a bolt db file
// that lives on local disk. FSM implements raft.FSM and physical.Backend
// interfaces.
type FSM struct {
// latestIndex and latestTerm must stay at the top of this struct to be
// properly 64-bit aligned.
// latestIndex and latestTerm are the term and index of the last log we
// received
latestIndex *uint64
latestTerm *uint64
// latestConfig is the latest server configuration we've seen
latestConfig atomic.Value
l sync.RWMutex
path string
logger log.Logger
noopRestore bool
// applyCallback is used to control the pace of applies in tests
applyCallback func()
db *bolt.DB
// retoreCb is called after we've restored a snapshot
restoreCb restoreCallback
chunker *raftchunking.ChunkingBatchingFSM
localID string
desiredSuffrage string
unknownOpTypes sync.Map
}
// NewFSM constructs a FSM using the given directory
func NewFSM(path string, localID string, logger log.Logger) (*FSM, error) {
// Initialize the latest term, index, and config values
latestTerm := new(uint64)
latestIndex := new(uint64)
latestConfig := atomic.Value{}
atomic.StoreUint64(latestTerm, 0)
atomic.StoreUint64(latestIndex, 0)
latestConfig.Store((*ConfigurationValue)(nil))
f := &FSM{
path: path,
logger: logger,
latestTerm: latestTerm,
latestIndex: latestIndex,
latestConfig: latestConfig,
// Assume that the default intent is to join as as voter. This will be updated
// when this node joins a cluster with a different suffrage, or during cluster
// setup if this is already part of a cluster with a desired suffrage.
desiredSuffrage: "voter",
localID: localID,
}
f.chunker = raftchunking.NewChunkingBatchingFSM(f, &FSMChunkStorage{
f: f,
ctx: context.Background(),
})
dbPath := filepath.Join(path, databaseFilename)
f.l.Lock()
defer f.l.Unlock()
if err := f.openDBFile(dbPath); err != nil {
return nil, fmt.Errorf("failed to open bolt file: %w", err)
}
return f, nil
}
func (f *FSM) getDB() *bolt.DB {
f.l.RLock()
defer f.l.RUnlock()
return f.db
}
// SetFSMDelay adds a delay to the FSM apply. This is used in tests to simulate
// a slow apply.
func (r *RaftBackend) SetFSMDelay(delay time.Duration) {
r.SetFSMApplyCallback(func() { time.Sleep(delay) })
}
func (r *RaftBackend) SetFSMApplyCallback(f func()) {
r.fsm.l.Lock()
r.fsm.applyCallback = f
r.fsm.l.Unlock()
}
func (f *FSM) openDBFile(dbPath string) error {
if len(dbPath) == 0 {
return errors.New("can not open empty filename")
}
st, err := os.Stat(dbPath)
switch {
case err != nil && os.IsNotExist(err):
case err != nil:
return fmt.Errorf("error checking raft FSM db file %q: %v", dbPath, err)
default:
perms := st.Mode() & os.ModePerm
if perms&0o077 != 0 {
f.logger.Warn("raft FSM db file has wider permissions than needed",
"needed", os.FileMode(0o600), "existing", perms)
}
}
opts := boltOptions(dbPath)
start := time.Now()
boltDB, err := bolt.Open(dbPath, 0o600, opts)
if err != nil {
return err
}
elapsed := time.Now().Sub(start)
f.logger.Debug("time to open database", "elapsed", elapsed, "path", dbPath)
metrics.MeasureSince([]string{"raft_storage", "fsm", "open_db_file"}, start)
err = boltDB.Update(func(tx *bolt.Tx) error {
// make sure we have the necessary buckets created
_, err := tx.CreateBucketIfNotExists(dataBucketName)
if err != nil {
return fmt.Errorf("failed to create bucket: %v", err)
}
b, err := tx.CreateBucketIfNotExists(configBucketName)
if err != nil {
return fmt.Errorf("failed to create bucket: %v", err)
}
// Read in our latest index and term and populate it inmemory
val := b.Get(latestIndexKey)
if val != nil {
var latest IndexValue
err := proto.Unmarshal(val, &latest)
if err != nil {
return err
}
atomic.StoreUint64(f.latestTerm, latest.Term)
atomic.StoreUint64(f.latestIndex, latest.Index)
}
// Read in our latest config and populate it inmemory
val = b.Get(latestConfigKey)
if val != nil {
var latest ConfigurationValue
err := proto.Unmarshal(val, &latest)
if err != nil {
return err
}
f.latestConfig.Store(&latest)
}
return nil
})
if err != nil {
return err
}
f.db = boltDB
return nil
}
func (f *FSM) Stats() bolt.Stats {
f.l.RLock()
defer f.l.RUnlock()
return f.db.Stats()
}
func (f *FSM) Close() error {
f.l.RLock()
defer f.l.RUnlock()
return f.db.Close()
}
func writeSnapshotMetaToDB(metadata *raft.SnapshotMeta, db *bolt.DB) error {
latestIndex := &IndexValue{
Term: metadata.Term,
Index: metadata.Index,
}
indexBytes, err := proto.Marshal(latestIndex)
if err != nil {
return err
}
protoConfig := raftConfigurationToProtoConfiguration(metadata.ConfigurationIndex, metadata.Configuration)
configBytes, err := proto.Marshal(protoConfig)
if err != nil {
return err
}
err = db.Update(func(tx *bolt.Tx) error {
b, err := tx.CreateBucketIfNotExists(configBucketName)
if err != nil {
return err
}
err = b.Put(latestConfigKey, configBytes)
if err != nil {
return err
}
err = b.Put(latestIndexKey, indexBytes)
if err != nil {
return err
}
return nil
})
if err != nil {
return err
}
return nil
}
func (f *FSM) localNodeConfig() (*LocalNodeConfigValue, error) {
var configBytes []byte
if err := f.db.View(func(tx *bolt.Tx) error {
value := tx.Bucket(configBucketName).Get(localNodeConfigKey)
if value != nil {
configBytes = make([]byte, len(value))
copy(configBytes, value)
}
return nil
}); err != nil {
return nil, err
}
if configBytes == nil {
return nil, nil
}
var lnConfig LocalNodeConfigValue
if configBytes != nil {
err := proto.Unmarshal(configBytes, &lnConfig)
if err != nil {
return nil, err
}
f.desiredSuffrage = lnConfig.DesiredSuffrage
return &lnConfig, nil
}
return nil, nil
}
func (f *FSM) DesiredSuffrage() string {
f.l.RLock()
defer f.l.RUnlock()
return f.desiredSuffrage
}
func (f *FSM) upgradeLocalNodeConfig() error {
f.l.Lock()
defer f.l.Unlock()
// Read the local node config
lnConfig, err := f.localNodeConfig()
if err != nil {
return err
}
// Entry is already present. Get the suffrage value.
if lnConfig != nil {
f.desiredSuffrage = lnConfig.DesiredSuffrage
return nil
}
//
// This is the upgrade case where there is no entry
//
lnConfig = &LocalNodeConfigValue{}
// Refer to the persisted latest raft config
config := f.latestConfig.Load().(*ConfigurationValue)
// If there is no config, then this is a fresh node coming up. This could end up
// being a voter or non-voter. But by default assume that this is a voter. It
// will be changed if this node joins the cluster as a non-voter.
if config == nil {
f.desiredSuffrage = "voter"
lnConfig.DesiredSuffrage = f.desiredSuffrage
return f.persistDesiredSuffrage(lnConfig)
}
// Get the last known suffrage of the node and assume that it is the desired
// suffrage. There is no better alternative here.
for _, srv := range config.Servers {
if srv.Id == f.localID {
switch srv.Suffrage {
case int32(raft.Nonvoter):
lnConfig.DesiredSuffrage = "non-voter"
default:
lnConfig.DesiredSuffrage = "voter"
}
// Bring the intent to the fsm instance.
f.desiredSuffrage = lnConfig.DesiredSuffrage
break
}
}
return f.persistDesiredSuffrage(lnConfig)
}
// recordSuffrage is called when a node successfully joins the cluster. This
// intent should land in the stored configuration. If the config isn't available
// yet, we still go ahead and store the intent in the fsm. During the next
// update to the configuration, this intent will be persisted.
func (f *FSM) recordSuffrage(desiredSuffrage string) error {
f.l.Lock()
defer f.l.Unlock()
if err := f.persistDesiredSuffrage(&LocalNodeConfigValue{
DesiredSuffrage: desiredSuffrage,
}); err != nil {
return err
}
f.desiredSuffrage = desiredSuffrage
return nil
}
func (f *FSM) persistDesiredSuffrage(lnconfig *LocalNodeConfigValue) error {
dsBytes, err := proto.Marshal(lnconfig)
if err != nil {
return err
}
return f.db.Update(func(tx *bolt.Tx) error {
return tx.Bucket(configBucketName).Put(localNodeConfigKey, dsBytes)
})
}
func (f *FSM) witnessSnapshot(metadata *raft.SnapshotMeta) error {
f.l.RLock()
defer f.l.RUnlock()
err := writeSnapshotMetaToDB(metadata, f.db)
if err != nil {
return err
}
atomic.StoreUint64(f.latestIndex, metadata.Index)
atomic.StoreUint64(f.latestTerm, metadata.Term)
f.latestConfig.Store(raftConfigurationToProtoConfiguration(metadata.ConfigurationIndex, metadata.Configuration))
return nil
}
// LatestState returns the latest index and configuration values we have seen on
// this FSM.
func (f *FSM) LatestState() (*IndexValue, *ConfigurationValue) {
return &IndexValue{
Term: atomic.LoadUint64(f.latestTerm),
Index: atomic.LoadUint64(f.latestIndex),
}, f.latestConfig.Load().(*ConfigurationValue)
}
// Delete deletes the given key from the bolt file.
func (f *FSM) Delete(ctx context.Context, path string) error {
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "delete"}, time.Now())
f.l.RLock()
defer f.l.RUnlock()
return f.db.Update(func(tx *bolt.Tx) error {
return tx.Bucket(dataBucketName).Delete([]byte(path))
})
}
// Delete deletes the given key from the bolt file.
func (f *FSM) DeletePrefix(ctx context.Context, prefix string) error {
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "delete_prefix"}, time.Now())
f.l.RLock()
defer f.l.RUnlock()
err := f.db.Update(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
c := tx.Bucket(dataBucketName).Cursor()
prefixBytes := []byte(prefix)
for k, _ := c.Seek(prefixBytes); k != nil && bytes.HasPrefix(k, prefixBytes); k, _ = c.Next() {
if err := c.Delete(); err != nil {
return err
}
}
return nil
})
return err
}
// Get retrieves the value at the given path from the bolt file.
func (f *FSM) Get(ctx context.Context, path string) (*physical.Entry, error) {
// TODO: Remove this outdated metric name in an older release
defer metrics.MeasureSince([]string{"raft", "get"}, time.Now())
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "get"}, time.Now())
f.l.RLock()
defer f.l.RUnlock()
var valCopy []byte
var found bool
err := f.db.View(func(tx *bolt.Tx) error {
value := tx.Bucket(dataBucketName).Get([]byte(path))
if value != nil {
found = true
valCopy = make([]byte, len(value))
copy(valCopy, value)
}
return nil
})
if err != nil {
return nil, err
}
if !found {
return nil, nil
}
return &physical.Entry{
Key: path,
Value: valCopy,
}, nil
}
// Put writes the given entry to the bolt file.
func (f *FSM) Put(ctx context.Context, entry *physical.Entry) error {
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "put"}, time.Now())
f.l.RLock()
defer f.l.RUnlock()
// Start a write transaction.
return f.db.Update(func(tx *bolt.Tx) error {
return tx.Bucket(dataBucketName).Put([]byte(entry.Key), entry.Value)
})
}
// List retrieves the set of keys with the given prefix from the bolt file.
func (f *FSM) List(ctx context.Context, prefix string) ([]string, error) {
// TODO: Remove this outdated metric name in a future release
defer metrics.MeasureSince([]string{"raft", "list"}, time.Now())
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "list"}, time.Now())
f.l.RLock()
defer f.l.RUnlock()
var keys []string
err := f.db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
c := tx.Bucket(dataBucketName).Cursor()
prefixBytes := []byte(prefix)
for k, _ := c.Seek(prefixBytes); k != nil && bytes.HasPrefix(k, prefixBytes); k, _ = c.Next() {
key := string(k)
key = strings.TrimPrefix(key, prefix)
if i := strings.Index(key, "/"); i == -1 {
// Add objects only from the current 'folder'
keys = append(keys, key)
} else {
// Add truncated 'folder' paths
if len(keys) == 0 || keys[len(keys)-1] != key[:i+1] {
keys = append(keys, string(key[:i+1]))
}
}
}
return nil
})
return keys, err
}
// Transaction writes all the operations in the provided transaction to the bolt
// file.
func (f *FSM) Transaction(ctx context.Context, txns []*physical.TxnEntry) error {
f.l.RLock()
defer f.l.RUnlock()
// Start a write transaction.
err := f.db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket(dataBucketName)
for _, txn := range txns {
var err error
switch txn.Operation {
case physical.PutOperation:
err = b.Put([]byte(txn.Entry.Key), txn.Entry.Value)
case physical.DeleteOperation:
err = b.Delete([]byte(txn.Entry.Key))
default:
return fmt.Errorf("%q is not a supported transaction operation", txn.Operation)
}
if err != nil {
return err
}
}
return nil
})
return err
}
// ApplyBatch will apply a set of logs to the FSM. This is called from the raft
// library.
func (f *FSM) ApplyBatch(logs []*raft.Log) []interface{} {
numLogs := len(logs)
if numLogs == 0 {
return []interface{}{}
}
// We will construct one slice per log, each slice containing another slice of results from our get ops
entrySlices := make([][]*FSMEntry, 0, numLogs)
// Do the unmarshalling first so we don't hold locks
var latestConfiguration *ConfigurationValue
commands := make([]interface{}, 0, numLogs)
for _, l := range logs {
switch l.Type {
case raft.LogCommand:
command := &LogData{}
err := proto.Unmarshal(l.Data, command)
if err != nil {
f.logger.Error("error proto unmarshaling log data", "error", err)
panic("error proto unmarshaling log data")
}
commands = append(commands, command)
case raft.LogConfiguration:
configuration := raft.DecodeConfiguration(l.Data)
config := raftConfigurationToProtoConfiguration(l.Index, configuration)
commands = append(commands, config)
// Update the latest configuration the fsm has received; we will
// store this after it has been committed to storage.
latestConfiguration = config
default:
panic(fmt.Sprintf("got unexpected log type: %d", l.Type))
}
}
// Only advance latest pointer if this log has a higher index value than
// what we have seen in the past.
var logIndex []byte
var err error
latestIndex, _ := f.LatestState()
lastLog := logs[numLogs-1]
if latestIndex.Index < lastLog.Index {
logIndex, err = proto.Marshal(&IndexValue{
Term: lastLog.Term,
Index: lastLog.Index,
})
if err != nil {
f.logger.Error("unable to marshal latest index", "error", err)
panic("unable to marshal latest index")
}
}
f.l.RLock()
defer f.l.RUnlock()
if f.applyCallback != nil {
f.applyCallback()
}
err = f.db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket(dataBucketName)
for _, commandRaw := range commands {
entrySlice := make([]*FSMEntry, 0)
switch command := commandRaw.(type) {
case *LogData:
for _, op := range command.Operations {
var err error
switch op.OpType {
case putOp:
err = b.Put([]byte(op.Key), op.Value)
case deleteOp:
err = b.Delete([]byte(op.Key))
case getOp:
fsmEntry := &FSMEntry{
Key: op.Key,
}
val := b.Get([]byte(op.Key))
if len(val) > 0 {
newVal := make([]byte, len(val))
copy(newVal, val)
fsmEntry.Value = newVal
}
entrySlice = append(entrySlice, fsmEntry)
case restoreCallbackOp:
if f.restoreCb != nil {
// Kick off the restore callback function in a go routine
go f.restoreCb(context.Background())
}
default:
if _, ok := f.unknownOpTypes.Load(op.OpType); !ok {
f.logger.Error("unsupported transaction operation", "op", op.OpType)
f.unknownOpTypes.Store(op.OpType, struct{}{})
}
}
if err != nil {
return err
}
}
case *ConfigurationValue:
b := tx.Bucket(configBucketName)
configBytes, err := proto.Marshal(command)
if err != nil {
return err
}
if err := b.Put(latestConfigKey, configBytes); err != nil {
return err
}
}
entrySlices = append(entrySlices, entrySlice)
}
if len(logIndex) > 0 {
b := tx.Bucket(configBucketName)
err = b.Put(latestIndexKey, logIndex)
if err != nil {
return err
}
}
return nil
})
if err != nil {
f.logger.Error("failed to store data", "error", err)
panic("failed to store data")
}
// If we advanced the latest value, update the in-memory representation too.
if len(logIndex) > 0 {
atomic.StoreUint64(f.latestTerm, lastLog.Term)
atomic.StoreUint64(f.latestIndex, lastLog.Index)
}
// If one or more configuration changes were processed, store the latest one.
if latestConfiguration != nil {
f.latestConfig.Store(latestConfiguration)
}
// Build the responses. The logs array is used here to ensure we reply to
// all command values; even if they are not of the types we expect. This
// should futureproof this function from more log types being provided.
resp := make([]interface{}, numLogs)
for i := range logs {
resp[i] = &FSMApplyResponse{
Success: true,
EntrySlice: entrySlices[i],
}
}
return resp
}
// Apply will apply a log value to the FSM. This is called from the raft
// library.
func (f *FSM) Apply(log *raft.Log) interface{} {
return f.ApplyBatch([]*raft.Log{log})[0]
}
type writeErrorCloser interface {
io.WriteCloser
CloseWithError(error) error
}
// writeTo will copy the FSM's content to a remote sink. The data is written
// twice, once for use in determining various metadata attributes of the dataset
// (size, checksum, etc) and a second for the sink of the data. We also use a
// proto delimited writer so we can stream proto messages to the sink.
func (f *FSM) writeTo(ctx context.Context, metaSink writeErrorCloser, sink writeErrorCloser) {
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "write_snapshot"}, time.Now())
protoWriter := NewDelimitedWriter(sink)
metadataProtoWriter := NewDelimitedWriter(metaSink)
f.l.RLock()
defer f.l.RUnlock()
err := f.db.View(func(tx *bolt.Tx) error {
b := tx.Bucket(dataBucketName)
c := b.Cursor()
// Do the first scan of the data for metadata purposes.
for k, v := c.First(); k != nil; k, v = c.Next() {
err := metadataProtoWriter.WriteMsg(&pb.StorageEntry{
Key: string(k),
Value: v,
})
if err != nil {
metaSink.CloseWithError(err)
return err
}
}
metaSink.Close()
// Do the second scan for copy purposes.
for k, v := c.First(); k != nil; k, v = c.Next() {
err := protoWriter.WriteMsg(&pb.StorageEntry{
Key: string(k),
Value: v,
})
if err != nil {
return err
}
}
return nil
})
sink.CloseWithError(err)
}
// Snapshot implements the FSM interface. It returns a noop snapshot object.
func (f *FSM) Snapshot() (raft.FSMSnapshot, error) {
return &noopSnapshotter{
fsm: f,
}, nil
}
// SetNoopRestore is used to disable restore operations on raft startup. Because
// we are using persistent storage in our FSM we do not need to issue a restore
// on startup.
func (f *FSM) SetNoopRestore(enabled bool) {
f.l.Lock()
f.noopRestore = enabled
f.l.Unlock()
}
// Restore installs a new snapshot from the provided reader. It does an atomic
// rename of the snapshot file into the database filepath. While a restore is
// happening the FSM is locked and no writes or reads can be performed.
func (f *FSM) Restore(r io.ReadCloser) error {
defer metrics.MeasureSince([]string{"raft_storage", "fsm", "restore_snapshot"}, time.Now())
if f.noopRestore {
return nil
}
snapshotInstaller, ok := r.(*boltSnapshotInstaller)
if !ok {
wrapper, ok := r.(raft.ReadCloserWrapper)
if !ok {
return fmt.Errorf("expected ReadCloserWrapper object, got: %T", r)
}
snapshotInstallerRaw := wrapper.WrappedReadCloser()
snapshotInstaller, ok = snapshotInstallerRaw.(*boltSnapshotInstaller)
if !ok {
return fmt.Errorf("expected snapshot installer object, got: %T", snapshotInstallerRaw)
}
}
f.l.Lock()
defer f.l.Unlock()
// Cache the local node config before closing the db file
lnConfig, err := f.localNodeConfig()
if err != nil {
return err
}
// Close the db file
if err := f.db.Close(); err != nil {
f.logger.Error("failed to close database file", "error", err)
return err
}
dbPath := filepath.Join(f.path, databaseFilename)
f.logger.Info("installing snapshot to FSM")
// Install the new boltdb file
var retErr *multierror.Error
if err := snapshotInstaller.Install(dbPath); err != nil {
f.logger.Error("failed to install snapshot", "error", err)
retErr = multierror.Append(retErr, fmt.Errorf("failed to install snapshot database: %w", err))
} else {
f.logger.Info("snapshot installed")
}
// Open the db file. We want to do this regardless of if the above install
// worked. If the install failed we should try to open the old DB file.
if err := f.openDBFile(dbPath); err != nil {
f.logger.Error("failed to open new database file", "error", err)
retErr = multierror.Append(retErr, fmt.Errorf("failed to open new bolt file: %w", err))
}
// Handle local node config restore. lnConfig should not be nil here, but
// adding the nil check anyways for safety.
if lnConfig != nil {
// Persist the local node config on the restored fsm.
if err := f.persistDesiredSuffrage(lnConfig); err != nil {
f.logger.Error("failed to persist local node config from before the restore", "error", err)
retErr = multierror.Append(retErr, fmt.Errorf("failed to persist local node config from before the restore: %w", err))
}
}
return retErr.ErrorOrNil()
}
// noopSnapshotter implements the fsm.Snapshot interface. It doesn't do anything
// since our SnapshotStore reads data out of the FSM on Open().
type noopSnapshotter struct {
fsm *FSM
}
// Persist implements the fsm.Snapshot interface. It doesn't need to persist any
// state data, but it does persist the raft metadata. This is necessary so we
// can be sure to capture indexes for operation types that are not sent to the
// FSM.
func (s *noopSnapshotter) Persist(sink raft.SnapshotSink) error {
boltSnapshotSink := sink.(*BoltSnapshotSink)
// We are processing a snapshot, fastforward the index, term, and
// configuration to the latest seen by the raft system.
if err := s.fsm.witnessSnapshot(&boltSnapshotSink.meta); err != nil {
return err
}
return nil
}
// Release doesn't do anything.
func (s *noopSnapshotter) Release() {}
// raftConfigurationToProtoConfiguration converts a raft configuration object to
// a proto value.
func raftConfigurationToProtoConfiguration(index uint64, configuration raft.Configuration) *ConfigurationValue {
servers := make([]*Server, len(configuration.Servers))
for i, s := range configuration.Servers {
servers[i] = &Server{
Suffrage: int32(s.Suffrage),
Id: string(s.ID),
Address: string(s.Address),
}
}
return &ConfigurationValue{
Index: index,
Servers: servers,
}
}
// protoConfigurationToRaftConfiguration converts a proto configuration object
// to a raft object.
func protoConfigurationToRaftConfiguration(configuration *ConfigurationValue) (uint64, raft.Configuration) {
servers := make([]raft.Server, len(configuration.Servers))
for i, s := range configuration.Servers {
servers[i] = raft.Server{
Suffrage: raft.ServerSuffrage(s.Suffrage),
ID: raft.ServerID(s.Id),
Address: raft.ServerAddress(s.Address),
}
}
return configuration.Index, raft.Configuration{
Servers: servers,
}
}
type FSMChunkStorage struct {
f *FSM
ctx context.Context
}
// chunkPaths returns a disk prefix and key given chunkinfo
func (f *FSMChunkStorage) chunkPaths(chunk *raftchunking.ChunkInfo) (string, string) {
prefix := fmt.Sprintf("%s%d/", chunkingPrefix, chunk.OpNum)
key := fmt.Sprintf("%s%d", prefix, chunk.SequenceNum)
return prefix, key
}
func (f *FSMChunkStorage) StoreChunk(chunk *raftchunking.ChunkInfo) (bool, error) {
b, err := jsonutil.EncodeJSON(chunk)
if err != nil {
return false, fmt.Errorf("error encoding chunk info: %w", err)
}
prefix, key := f.chunkPaths(chunk)
entry := &physical.Entry{
Key: key,
Value: b,
}
f.f.l.RLock()
defer f.f.l.RUnlock()
// Start a write transaction.
done := new(bool)
if err := f.f.db.Update(func(tx *bolt.Tx) error {
if err := tx.Bucket(dataBucketName).Put([]byte(entry.Key), entry.Value); err != nil {
return fmt.Errorf("error storing chunk info: %w", err)
}
// Assume bucket exists and has keys
c := tx.Bucket(dataBucketName).Cursor()
var keys []string
prefixBytes := []byte(prefix)
for k, _ := c.Seek(prefixBytes); k != nil && bytes.HasPrefix(k, prefixBytes); k, _ = c.Next() {
key := string(k)
key = strings.TrimPrefix(key, prefix)
if i := strings.Index(key, "/"); i == -1 {
// Add objects only from the current 'folder'
keys = append(keys, key)
} else {
// Add truncated 'folder' paths
keys = strutil.AppendIfMissing(keys, string(key[:i+1]))
}
}
*done = uint32(len(keys)) == chunk.NumChunks
return nil
}); err != nil {
return false, err
}
return *done, nil
}
func (f *FSMChunkStorage) FinalizeOp(opNum uint64) ([]*raftchunking.ChunkInfo, error) {
ret, err := f.chunksForOpNum(opNum)
if err != nil {
return nil, fmt.Errorf("error getting chunks for op keys: %w", err)
}
prefix, _ := f.chunkPaths(&raftchunking.ChunkInfo{OpNum: opNum})
if err := f.f.DeletePrefix(f.ctx, prefix); err != nil {
return nil, fmt.Errorf("error deleting prefix after op finalization: %w", err)
}
return ret, nil
}
func (f *FSMChunkStorage) chunksForOpNum(opNum uint64) ([]*raftchunking.ChunkInfo, error) {
prefix, _ := f.chunkPaths(&raftchunking.ChunkInfo{OpNum: opNum})
opChunkKeys, err := f.f.List(f.ctx, prefix)
if err != nil {
return nil, fmt.Errorf("error fetching op chunk keys: %w", err)
}
if len(opChunkKeys) == 0 {
return nil, nil
}
var ret []*raftchunking.ChunkInfo
for _, v := range opChunkKeys {
seqNum, err := strconv.ParseInt(v, 10, 64)
if err != nil {
return nil, fmt.Errorf("error converting seqnum to integer: %w", err)
}
entry, err := f.f.Get(f.ctx, prefix+v)
if err != nil {
return nil, fmt.Errorf("error fetching chunkinfo: %w", err)
}
var ci raftchunking.ChunkInfo
if err := jsonutil.DecodeJSON(entry.Value, &ci); err != nil {
return nil, fmt.Errorf("error decoding chunkinfo json: %w", err)
}
if ret == nil {
ret = make([]*raftchunking.ChunkInfo, ci.NumChunks)
}
ret[seqNum] = &ci
}
return ret, nil
}
func (f *FSMChunkStorage) GetChunks() (raftchunking.ChunkMap, error) {
opNums, err := f.f.List(f.ctx, chunkingPrefix)
if err != nil {
return nil, fmt.Errorf("error doing recursive list for chunk saving: %w", err)
}
if len(opNums) == 0 {
return nil, nil
}
ret := make(raftchunking.ChunkMap, len(opNums))
for _, opNumStr := range opNums {
opNum, err := strconv.ParseInt(opNumStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("error parsing op num during chunk saving: %w", err)
}
opChunks, err := f.chunksForOpNum(uint64(opNum))
if err != nil {
return nil, fmt.Errorf("error getting chunks for op keys during chunk saving: %w", err)
}
ret[uint64(opNum)] = opChunks
}
return ret, nil
}
func (f *FSMChunkStorage) RestoreChunks(chunks raftchunking.ChunkMap) error {
if err := f.f.DeletePrefix(f.ctx, chunkingPrefix); err != nil {
return fmt.Errorf("error deleting prefix for chunk restoration: %w", err)
}
if len(chunks) == 0 {
return nil
}
for opNum, opChunks := range chunks {
for _, chunk := range opChunks {
if chunk == nil {
continue
}
if chunk.OpNum != opNum {
return errors.New("unexpected op number in chunk")
}
if _, err := f.StoreChunk(chunk); err != nil {
return fmt.Errorf("error storing chunk during restoration: %w", err)
}
}
}
return nil
}