| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* |
| Long double expansions are |
| Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| and are incorporated herein by permission of the author. The author |
| reserves the right to distribute this material elsewhere under different |
| copying permissions. These modifications are distributed here under the |
| following terms: |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* __ieee754_asin(x) |
| * Method : |
| * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
| * we approximate asin(x) on [0,0.5] by |
| * asin(x) = x + x*x^2*R(x^2) |
| * Between .5 and .625 the approximation is |
| * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) |
| * For x in [0.625,1] |
| * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
| * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
| * then for x>0.98 |
| * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
| * For x<=0.98, let pio4_hi = pio2_hi/2, then |
| * f = hi part of s; |
| * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
| * and |
| * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
| * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
| * |
| * Special cases: |
| * if x is NaN, return x itself; |
| * if |x|>1, return NaN with invalid signal. |
| * |
| */ |
| |
| #include "quadmath-imp.h" |
| |
| static const __float128 |
| one = 1, |
| huge = 1.0e+4932Q, |
| pio2_hi = 1.5707963267948966192313216916397514420986Q, |
| pio2_lo = 4.3359050650618905123985220130216759843812E-35Q, |
| pio4_hi = 7.8539816339744830961566084581987569936977E-1Q, |
| |
| /* coefficient for R(x^2) */ |
| |
| /* asin(x) = x + x^3 pS(x^2) / qS(x^2) |
| 0 <= x <= 0.5 |
| peak relative error 1.9e-35 */ |
| pS0 = -8.358099012470680544198472400254596543711E2Q, |
| pS1 = 3.674973957689619490312782828051860366493E3Q, |
| pS2 = -6.730729094812979665807581609853656623219E3Q, |
| pS3 = 6.643843795209060298375552684423454077633E3Q, |
| pS4 = -3.817341990928606692235481812252049415993E3Q, |
| pS5 = 1.284635388402653715636722822195716476156E3Q, |
| pS6 = -2.410736125231549204856567737329112037867E2Q, |
| pS7 = 2.219191969382402856557594215833622156220E1Q, |
| pS8 = -7.249056260830627156600112195061001036533E-1Q, |
| pS9 = 1.055923570937755300061509030361395604448E-3Q, |
| |
| qS0 = -5.014859407482408326519083440151745519205E3Q, |
| qS1 = 2.430653047950480068881028451580393430537E4Q, |
| qS2 = -4.997904737193653607449250593976069726962E4Q, |
| qS3 = 5.675712336110456923807959930107347511086E4Q, |
| qS4 = -3.881523118339661268482937768522572588022E4Q, |
| qS5 = 1.634202194895541569749717032234510811216E4Q, |
| qS6 = -4.151452662440709301601820849901296953752E3Q, |
| qS7 = 5.956050864057192019085175976175695342168E2Q, |
| qS8 = -4.175375777334867025769346564600396877176E1Q, |
| /* 1.000000000000000000000000000000000000000E0 */ |
| |
| /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) |
| -0.0625 <= x <= 0.0625 |
| peak relative error 3.3e-35 */ |
| rS0 = -5.619049346208901520945464704848780243887E0Q, |
| rS1 = 4.460504162777731472539175700169871920352E1Q, |
| rS2 = -1.317669505315409261479577040530751477488E2Q, |
| rS3 = 1.626532582423661989632442410808596009227E2Q, |
| rS4 = -3.144806644195158614904369445440583873264E1Q, |
| rS5 = -9.806674443470740708765165604769099559553E1Q, |
| rS6 = 5.708468492052010816555762842394927806920E1Q, |
| rS7 = 1.396540499232262112248553357962639431922E1Q, |
| rS8 = -1.126243289311910363001762058295832610344E1Q, |
| rS9 = -4.956179821329901954211277873774472383512E-1Q, |
| rS10 = 3.313227657082367169241333738391762525780E-1Q, |
| |
| sS0 = -4.645814742084009935700221277307007679325E0Q, |
| sS1 = 3.879074822457694323970438316317961918430E1Q, |
| sS2 = -1.221986588013474694623973554726201001066E2Q, |
| sS3 = 1.658821150347718105012079876756201905822E2Q, |
| sS4 = -4.804379630977558197953176474426239748977E1Q, |
| sS5 = -1.004296417397316948114344573811562952793E2Q, |
| sS6 = 7.530281592861320234941101403870010111138E1Q, |
| sS7 = 1.270735595411673647119592092304357226607E1Q, |
| sS8 = -1.815144839646376500705105967064792930282E1Q, |
| sS9 = -7.821597334910963922204235247786840828217E-2Q, |
| /* 1.000000000000000000000000000000000000000E0 */ |
| |
| asinr5625 = 5.9740641664535021430381036628424864397707E-1Q; |
| |
| |
| |
| __float128 |
| asinq (__float128 x) |
| { |
| __float128 t, w, p, q, c, r, s; |
| int32_t ix, sign, flag; |
| ieee854_float128 u; |
| |
| flag = 0; |
| u.value = x; |
| sign = u.words32.w0; |
| ix = sign & 0x7fffffff; |
| u.words32.w0 = ix; /* |x| */ |
| if (ix >= 0x3fff0000) /* |x|>= 1 */ |
| { |
| if (ix == 0x3fff0000 |
| && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) |
| /* asin(1)=+-pi/2 with inexact */ |
| return x * pio2_hi + x * pio2_lo; |
| return (x - x) / (x - x); /* asin(|x|>1) is NaN */ |
| } |
| else if (ix < 0x3ffe0000) /* |x| < 0.5 */ |
| { |
| if (ix < 0x3fc60000) /* |x| < 2**-57 */ |
| { |
| math_check_force_underflow (x); |
| __float128 force_inexact = huge + x; |
| math_force_eval (force_inexact); |
| return x; /* return x with inexact if x!=0 */ |
| } |
| else |
| { |
| t = x * x; |
| /* Mark to use pS, qS later on. */ |
| flag = 1; |
| } |
| } |
| else if (ix < 0x3ffe4000) /* 0.625 */ |
| { |
| t = u.value - 0.5625; |
| p = ((((((((((rS10 * t |
| + rS9) * t |
| + rS8) * t |
| + rS7) * t |
| + rS6) * t |
| + rS5) * t |
| + rS4) * t |
| + rS3) * t |
| + rS2) * t |
| + rS1) * t |
| + rS0) * t; |
| |
| q = ((((((((( t |
| + sS9) * t |
| + sS8) * t |
| + sS7) * t |
| + sS6) * t |
| + sS5) * t |
| + sS4) * t |
| + sS3) * t |
| + sS2) * t |
| + sS1) * t |
| + sS0; |
| t = asinr5625 + p / q; |
| if ((sign & 0x80000000) == 0) |
| return t; |
| else |
| return -t; |
| } |
| else |
| { |
| /* 1 > |x| >= 0.625 */ |
| w = one - u.value; |
| t = w * 0.5; |
| } |
| |
| p = (((((((((pS9 * t |
| + pS8) * t |
| + pS7) * t |
| + pS6) * t |
| + pS5) * t |
| + pS4) * t |
| + pS3) * t |
| + pS2) * t |
| + pS1) * t |
| + pS0) * t; |
| |
| q = (((((((( t |
| + qS8) * t |
| + qS7) * t |
| + qS6) * t |
| + qS5) * t |
| + qS4) * t |
| + qS3) * t |
| + qS2) * t |
| + qS1) * t |
| + qS0; |
| |
| if (flag) /* 2^-57 < |x| < 0.5 */ |
| { |
| w = p / q; |
| return x + x * w; |
| } |
| |
| s = sqrtq (t); |
| if (ix >= 0x3ffef333) /* |x| > 0.975 */ |
| { |
| w = p / q; |
| t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
| } |
| else |
| { |
| u.value = s; |
| u.words32.w3 = 0; |
| u.words32.w2 = 0; |
| w = u.value; |
| c = (t - w * w) / (s + w); |
| r = p / q; |
| p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
| q = pio4_hi - 2.0 * w; |
| t = pio4_hi - (p - q); |
| } |
| |
| if ((sign & 0x80000000) == 0) |
| return t; |
| else |
| return -t; |
| } |