| /* Compute complex base 10 logarithm. |
| Copyright (C) 1997-2018 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "quadmath-imp.h" |
| |
| /* log_10 (2). */ |
| #define LOG10_2 0.3010299956639811952137388947244930267682Q |
| |
| /* pi * log10 (e). */ |
| #define PI_LOG10E 1.364376353841841347485783625431355770210Q |
| |
| __complex128 |
| clog10q (__complex128 x) |
| { |
| __complex128 result; |
| int rcls = fpclassifyq (__real__ x); |
| int icls = fpclassifyq (__imag__ x); |
| |
| if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO)) |
| { |
| /* Real and imaginary part are 0.0. */ |
| __imag__ result = signbitq (__real__ x) ? PI_LOG10E : 0; |
| __imag__ result = copysignq (__imag__ result, __imag__ x); |
| /* Yes, the following line raises an exception. */ |
| __real__ result = -1 / fabsq (__real__ x); |
| } |
| else if (__glibc_likely (rcls != QUADFP_NAN && icls != QUADFP_NAN)) |
| { |
| /* Neither real nor imaginary part is NaN. */ |
| __float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x); |
| int scale = 0; |
| |
| if (absx < absy) |
| { |
| __float128 t = absx; |
| absx = absy; |
| absy = t; |
| } |
| |
| if (absx > FLT128_MAX / 2) |
| { |
| scale = -1; |
| absx = scalbnq (absx, scale); |
| absy = (absy >= FLT128_MIN * 2 ? scalbnq (absy, scale) : 0); |
| } |
| else if (absx < FLT128_MIN && absy < FLT128_MIN) |
| { |
| scale = FLT128_MANT_DIG; |
| absx = scalbnq (absx, scale); |
| absy = scalbnq (absy, scale); |
| } |
| |
| if (absx == 1 && scale == 0) |
| { |
| __real__ result = (log1pq (absy * absy) |
| * ((__float128) M_LOG10Eq / 2)); |
| math_check_force_underflow_nonneg (__real__ result); |
| } |
| else if (absx > 1 && absx < 2 && absy < 1 && scale == 0) |
| { |
| __float128 d2m1 = (absx - 1) * (absx + 1); |
| if (absy >= FLT128_EPSILON) |
| d2m1 += absy * absy; |
| __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2); |
| } |
| else if (absx < 1 |
| && absx >= 0.5Q |
| && absy < FLT128_EPSILON / 2 |
| && scale == 0) |
| { |
| __float128 d2m1 = (absx - 1) * (absx + 1); |
| __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2); |
| } |
| else if (absx < 1 |
| && absx >= 0.5Q |
| && scale == 0 |
| && absx * absx + absy * absy >= 0.5Q) |
| { |
| __float128 d2m1 = __quadmath_x2y2m1q (absx, absy); |
| __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2); |
| } |
| else |
| { |
| __float128 d = hypotq (absx, absy); |
| __real__ result = log10q (d) - scale * LOG10_2; |
| } |
| |
| __imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x); |
| } |
| else |
| { |
| __imag__ result = nanq (""); |
| if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE) |
| /* Real or imaginary part is infinite. */ |
| __real__ result = HUGE_VALQ; |
| else |
| __real__ result = nanq (""); |
| } |
| |
| return result; |
| } |