| /* s_cosl.c -- long double version of s_cos.c. |
| * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. |
| */ |
| |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* cosq(x) |
| * Return cosine function of x. |
| * |
| * kernel function: |
| * __quadmath_kernel_sinq ... sine function on [-pi/4,pi/4] |
| * __quadmath_kernel_cosq ... cosine function on [-pi/4,pi/4] |
| * __quadmath_rem_pio2q ... argument reduction routine |
| * |
| * Method. |
| * Let S,C and T denote the sin, cos and tan respectively on |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
| * in [-pi/4 , +pi/4], and let n = k mod 4. |
| * We have |
| * |
| * n sin(x) cos(x) tan(x) |
| * ---------------------------------------------------------- |
| * 0 S C T |
| * 1 C -S -1/T |
| * 2 -S -C T |
| * 3 -C S -1/T |
| * ---------------------------------------------------------- |
| * |
| * Special cases: |
| * Let trig be any of sin, cos, or tan. |
| * trig(+-INF) is NaN, with signals; |
| * trig(NaN) is that NaN; |
| * |
| * Accuracy: |
| * TRIG(x) returns trig(x) nearly rounded |
| */ |
| |
| #include "quadmath-imp.h" |
| |
| __float128 cosq(__float128 x) |
| { |
| __float128 y[2],z=0; |
| int64_t n, ix; |
| |
| /* High word of x. */ |
| GET_FLT128_MSW64(ix,x); |
| |
| /* |x| ~< pi/4 */ |
| ix &= 0x7fffffffffffffffLL; |
| if(ix <= 0x3ffe921fb54442d1LL) |
| return __quadmath_kernel_cosq(x,z); |
| |
| /* cos(Inf or NaN) is NaN */ |
| else if (ix>=0x7fff000000000000LL) { |
| if (ix == 0x7fff000000000000LL) { |
| GET_FLT128_LSW64(n,x); |
| if (n == 0) |
| errno = EDOM; |
| } |
| return x-x; |
| } |
| |
| /* argument reduction needed */ |
| else { |
| n = __quadmath_rem_pio2q(x,y); |
| switch(n&3) { |
| case 0: return __quadmath_kernel_cosq(y[0],y[1]); |
| case 1: return -__quadmath_kernel_sinq(y[0],y[1],1); |
| case 2: return -__quadmath_kernel_cosq(y[0],y[1]); |
| default: |
| return __quadmath_kernel_sinq(y[0],y[1],1); |
| } |
| } |
| } |