blob: bf33ba99cc0f1034929c02567a03eed52b91a554 [file] [log] [blame]
# SPDX-License-Identifier: (GPL-2.0 OR Linux-OpenIB)
# Copyright (c) 2019 Mellanox Technologies, Inc. All rights reserved. See COPYING file
# Copyright (c) 2020 Intel Corporation. All rights reserved. See COPYING file
"""
Provide some useful helper function for pyverbs' tests.
"""
from itertools import combinations as com
import errno
import subprocess
import unittest
import random
import socket
import struct
import string
import glob
import os
from pyverbs.pyverbs_error import PyverbsError, PyverbsRDMAError
from pyverbs.addr import AHAttr, AH, GlobalRoute
from tests.base import XRCResources, DCT_KEY
from tests.efa_base import SRDResources
from pyverbs.wr import SGE, SendWR, RecvWR
from pyverbs.qp import QPCap, QPInitAttr, QPInitAttrEx
from tests.mlx5_base import Mlx5DcResources, Mlx5DcStreamsRes
from pyverbs.base import PyverbsRDMAErrno
from pyverbs.cq import PollCqAttr, CQEX
from pyverbs.mr import MW, MWBindInfo
import pyverbs.device as d
import pyverbs.enums as e
from pyverbs.mr import MR
import pyverbs.providers.mlx5.mlx5_enums as me
MAX_MR_SIZE = 4194304
# Some HWs limit DM address and length alignment to 4 for read and write
# operations. Use a minimal length and alignment that respect that.
# For creation purposes use random alignments. As this is log2 of address
# alignment, no need for large numbers.
MIN_DM_SIZE = 4
DM_ALIGNMENT = 4
MIN_DM_LOG_ALIGN = 0
MAX_DM_LOG_ALIGN = 6
# Raw Packet QP supports TSO header, which creates a larger send WQE.
MAX_RAW_PACKET_SEND_WR = 2500
GRH_SIZE = 40
IMM_DATA = 1234
class MatchCriteriaEnable:
NONE = 0
OUTER = 1
MISC = 1 << 1
INNER = 1 << 2
MISC_2 = 1 << 3
MISC_3 = 1 << 4
class PacketConsts:
"""
Class to hold constant packets' values.
"""
ETHER_HEADER_SIZE = 14
IPV4_HEADER_SIZE = 20
IPV6_HEADER_SIZE = 40
UDP_HEADER_SIZE = 8
TCP_HEADER_SIZE = 20
VLAN_HEADER_SIZE = 4
TCP_HEADER_SIZE_WORDS = 5
IP_V4 = 4
IP_V6 = 6
TCP_PROTO = 'tcp'
UDP_PROTO = 'udp'
IP_V4_FLAGS = 2 # Don't fragment is set
TTL_HOP_LIMIT = 64
IHL = 5
# Hardcoded values for flow matchers
ETHER_TYPE_IPV4 = 0x800
MAC_MASK = "ff:ff:ff:ff:ff:ff"
ETHER_TYPE_IPV6 = 0x86DD
SRC_MAC = "24:8a:07:a5:28:c8"
# DST mac must be multicast
DST_MAC = "01:50:56:19:20:a7"
SRC_IP = "1.1.1.1"
DST_IP = "2.2.2.2"
SRC_PORT = 1234
DST_PORT = 5678
SRC_IP6 = "a0a1::a2a3:a4a5:a6a7:a8a9"
DST_IP6 = "b0b1::b2b3:b4b5:b6b7:b8b9"
SEQ_NUM = 1
WINDOW_SIZE = 65535
VXLAN_PORT = 4789
VXLAN_VNI = 7777777
VXLAN_FLAGS = 0x8
VXLAN_HEADER_SIZE = 8
VLAN_TPID = 0x8100
VLAN_PRIO = 5
VLAN_CFI = 1
VLAN_ID = 0xc0c
def get_mr_length():
"""
Provide a random value for MR length. We avoid large buffers as these
allocations typically fails.
We use random.random() instead of randrange() or randint() due to
performance issues when generating very large pseudo random numbers.
:return: A random MR length
"""
return int(MAX_MR_SIZE * random.random())
def filter_illegal_access_flags(element):
"""
Helper function to filter illegal access flags combinations
:param element: A list of access flags to check
:return: True if this list is legal, else False
"""
if e.IBV_ACCESS_REMOTE_ATOMIC in element or e.IBV_ACCESS_REMOTE_WRITE in element:
if not e.IBV_ACCESS_LOCAL_WRITE in element:
return False
return True
def get_access_flags(ctx):
"""
Provide an array of random legal access flags for an MR.
Since remote write and remote atomic require local write permission, if
one of them is randomly selected without local write, local write will be
added as well.
After verifying that the flags selection is legal, it is appended to an
array, assuming it wasn't previously appended.
:param ctx: Device Context to check capabilities
:param num: Size of initial collection
:return: A random legal value for MR flags
"""
attr = ctx.query_device()
attr_ex = ctx.query_device_ex()
vals = list(e.ibv_access_flags)
if not attr_ex.odp_caps.general_caps & e.IBV_ODP_SUPPORT:
vals.remove(e.IBV_ACCESS_ON_DEMAND)
if not attr.device_cap_flags & e.IBV_DEVICE_MEM_WINDOW:
vals.remove(e.IBV_ACCESS_MW_BIND)
if not attr.atomic_caps & e.IBV_ATOMIC_HCA:
vals.remove(e.IBV_ACCESS_REMOTE_ATOMIC)
arr = []
for i in range(1, len(vals)):
tmp = list(com(vals, i))
tmp = filter(filter_illegal_access_flags, tmp)
for t in tmp: # Iterate legal combinations and bitwise OR them
val = 0
for flag in t:
val += flag.value
arr.append(val)
return arr
def get_dmabuf_access_flags(ctx):
"""
Similar to get_access_flags, except that dma-buf MR only support
a subset of the flags.
:param ctx: Device Context to check capabilities
:return: A random legal value for MR flags
"""
attr = ctx.query_device()
vals = [e.IBV_ACCESS_LOCAL_WRITE, e.IBV_ACCESS_REMOTE_WRITE,
e.IBV_ACCESS_REMOTE_READ, e.IBV_ACCESS_REMOTE_ATOMIC,
e.IBV_ACCESS_RELAXED_ORDERING]
if not attr.atomic_caps & e.IBV_ATOMIC_HCA:
vals.remove(e.IBV_ACCESS_REMOTE_ATOMIC)
arr = []
for i in range(1, len(vals)):
tmp = list(com(vals, i))
tmp = filter(filter_illegal_access_flags, tmp)
for t in tmp: # Iterate legal combinations and bitwise OR them
val = 0
for flag in t:
val += flag.value
arr.append(val)
return arr
def get_dm_attrs(dm_len):
"""
Initializes an AllocDmAttr member with the given length and random
alignment. It currently sets comp_mask = 0 since other comp_mask values
are not supported.
:param dm_len:
:return: An initialized AllocDmAttr object
"""
align = random.randint(MIN_DM_LOG_ALIGN, MAX_DM_LOG_ALIGN)
return d.AllocDmAttr(dm_len, align, 0)
def sample(coll):
"""
Returns a random-length subset of the given collection.
:param coll: The collection to sample
:return: A subset of <collection>
"""
return random.sample(coll, int((len(coll) + 1) * random.random()))
def random_qp_cap(attr):
"""
Initializes a QPCap object with valid values based on the device's
attributes.
It doesn't check the max WR limits since they're reported for smaller WR
sizes.
:return: A QPCap object
"""
# We use significantly smaller values than those in device attributes.
# The attributes reported by the device don't take into account possible
# larger WQEs that include e.g. memory window.
send_wr = random.randint(1, int(attr.max_qp_wr / 8))
recv_wr = random.randint(1, int(attr.max_qp_wr / 8))
send_sge = random.randint(1, int(attr.max_sge / 2))
recv_sge = random.randint(1, int(attr.max_sge / 2))
return QPCap(send_wr, recv_wr, send_sge, recv_sge)
def random_qp_create_mask(qpt, attr_ex):
"""
Select a random sublist of ibv_qp_init_attr_mask. Some of the options are
not yet supported by pyverbs and will not be returned. TSO support is
checked for the device and the QP type. If it doesn't exist, TSO will not
be set.
:param qpt: Current QP type
:param attr_ex: Extended device attributes for capability checks
:return: A sublist of ibv_qp_init_attr_mask
"""
has_tso = attr_ex.tso_caps.max_tso > 0 and \
attr_ex.tso_caps.supported_qpts & 1 << qpt
supp_flags = [e.IBV_QP_INIT_ATTR_CREATE_FLAGS,
e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER]
# Either PD or XRCD flag is needed, XRCD is not supported yet
selected = sample(supp_flags)
selected.append(e.IBV_QP_INIT_ATTR_PD)
if e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER in selected and not has_tso:
selected.remove(e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER)
mask = 0
for s in selected:
mask += s.value
return mask
def get_create_qp_flags_raw_packet(attr_ex):
"""
Select random QP creation flags for Raw Packet QP. Filter out unsupported
flags prior to selection.
:param attr_ex: Device extended attributes to check capabilities
:return: A random combination of QP creation flags
"""
has_fcs = attr_ex.device_cap_flags_ex & e._IBV_DEVICE_RAW_SCATTER_FCS
has_cvlan = attr_ex.raw_packet_caps & e.IBV_RAW_PACKET_CAP_CVLAN_STRIPPING
has_padding = attr_ex.device_cap_flags_ex & \
e._IBV_DEVICE_PCI_WRITE_END_PADDING
l = list(e.ibv_qp_create_flags)
l.remove(e.IBV_QP_CREATE_SOURCE_QPN) # UD only
if not has_fcs:
l.remove(e.IBV_QP_CREATE_SCATTER_FCS)
if not has_cvlan:
l.remove(e.IBV_QP_CREATE_CVLAN_STRIPPING)
if not has_padding:
l.remove(e.IBV_QP_CREATE_PCI_WRITE_END_PADDING)
flags = sample(l)
val = 0
for i in flags:
val |= i.value
return val
def random_qp_create_flags(qpt, attr_ex):
"""
Select a random sublist of ibv_qp_create_flags according to the QP type.
:param qpt: Current QP type
:param attr_ex: Used for Raw Packet QP to check device capabilities
:return: A sublist of ibv_qp_create_flags
"""
if qpt == e.IBV_QPT_RAW_PACKET:
return get_create_qp_flags_raw_packet(attr_ex)
elif qpt == e.IBV_QPT_UD:
# IBV_QP_CREATE_SOURCE_QPN is only supported by mlx5 driver and is not
# to be check in unittests.
return random.choice([0, 2]) # IBV_QP_CREATE_BLOCK_SELF_MCAST_LB
else:
return 0
def random_qp_init_attr_ex(attr_ex, attr, qpt=None):
"""
Create a random-valued QPInitAttrEx object with the given QP type.
QP type affects QP capabilities, so allow users to set it and still get
valid attributes.
:param attr_ex: Extended device attributes for capability checks
:param attr: Device attributes for capability checks
:param qpt: Requested QP type
:return: A valid initialized QPInitAttrEx object
"""
max_tso = 0
if qpt is None:
qpt = random.choice([e.IBV_QPT_RC, e.IBV_QPT_UC, e.IBV_QPT_UD,
e.IBV_QPT_RAW_PACKET])
qp_cap = random_qp_cap(attr)
if qpt == e.IBV_QPT_RAW_PACKET and \
qp_cap.max_send_wr > MAX_RAW_PACKET_SEND_WR:
qp_cap.max_send_wr = MAX_RAW_PACKET_SEND_WR
sig = random.randint(0, 1)
mask = random_qp_create_mask(qpt, attr_ex)
if mask & e.IBV_QP_INIT_ATTR_CREATE_FLAGS:
cflags = random_qp_create_flags(qpt, attr_ex)
else:
cflags = 0
if mask & e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER:
if qpt != e.IBV_QPT_RAW_PACKET:
mask -= e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER
else:
max_tso = \
random.randint(16, int(attr_ex.tso_caps.max_tso / 800))
qia = QPInitAttrEx(qp_type=qpt, cap=qp_cap, sq_sig_all=sig, comp_mask=mask,
create_flags=cflags, max_tso_header=max_tso)
if mask & e.IBV_QP_INIT_ATTR_MAX_TSO_HEADER:
# TSO increases send WQE size, let's be on the safe side
qia.cap.max_send_sge = 2
return qia
def get_qp_init_attr(cq, attr):
"""
Creates a QPInitAttr object with a QP type of the provided <qpts> array and
other random values.
:param cq: CQ to be used as send and receive CQ
:param attr: Device attributes for capability checks
:return: An initialized QPInitAttr object
"""
qp_cap = random_qp_cap(attr)
sig = random.randint(0, 1)
return QPInitAttr(scq=cq, rcq=cq, cap=qp_cap, sq_sig_all=sig)
def wc_status_to_str(status):
try:
return \
{0: 'Success', 1: 'Local length error',
2: 'local QP operation error', 3: 'Local EEC operation error',
4: 'Local protection error', 5: 'WR flush error',
6: 'Memory window bind error', 7: 'Bad response error',
8: 'Local access error', 9: 'Remote invalidate request error',
10: 'Remote access error', 11: 'Remote operation error',
12: 'Retry exceeded', 13: 'RNR retry exceeded',
14: 'Local RDD violation error',
15: 'Remote invalidate RD request error',
16: 'Remote aort error', 17: 'Invalidate EECN error',
18: 'Invalidate EEC state error', 19: 'Fatal error',
20: 'Response timeout error', 21: 'General error'}[status]
except KeyError:
return 'Unknown WC status ({s})'.format(s=status)
def create_custom_mr(agr_obj, additional_access_flags=0, size=None):
"""
Creates a memory region using the aggregation object's PD.
If size is None, the agr_obj's message size is used to set the MR's size.
The access flags are local write and the additional_access_flags.
:param agr_obj: The aggregation object that creates the MR
:param additional_access_flags: Addition access flags to set in the MR
:param size: MR's length. If None, agr_obj.msg_size is used.
"""
mr_length = size if size else agr_obj.msg_size
try:
return MR(agr_obj.pd, mr_length,
e.IBV_ACCESS_LOCAL_WRITE | additional_access_flags)
except PyverbsRDMAError as ex:
if ex.error_code == errno.EOPNOTSUPP:
raise unittest.SkipTest(f'Create custom mr with additional access flags {additional_access_flags} is not supported')
raise ex
# Traffic helpers
def get_send_elements(agr_obj, is_server, opcode=e.IBV_WR_SEND):
"""
Creates a single SGE and a single Send WR for agr_obj's QP type. The content
of the message is either 's' for server side or 'c' for client side.
:param agr_obj: Aggregation object which contains all resources necessary
:param is_server: Indicates whether this is server or client side
:return: send wr and its SGE
"""
mr = agr_obj.mr
qp_type = agr_obj.sqp_lst[0].qp_type if isinstance(agr_obj, XRCResources) \
else agr_obj.qp.qp_type
offset = GRH_SIZE if qp_type == e.IBV_QPT_UD else 0
msg = (agr_obj.msg_size + offset) * ('s' if is_server else 'c')
mr.write(msg, agr_obj.msg_size + offset)
sge = SGE(mr.buf + offset, agr_obj.msg_size, agr_obj.mr_lkey)
send_wr = SendWR(opcode=opcode, num_sge=1, sg=[sge])
if opcode in [e.IBV_WR_RDMA_WRITE, e.IBV_WR_RDMA_READ]:
send_wr.set_wr_rdma(int(agr_obj.rkey), int(agr_obj.remote_addr))
return send_wr, sge
def get_recv_wr(agr_obj):
"""
Creates a single SGE Recv WR for agr_obj's QP type.
:param agr_obj: Aggregation object which contains all resources necessary
:return: recv wr
"""
qp_type = agr_obj.rqp_lst[0].qp_type if isinstance(agr_obj, XRCResources) \
else agr_obj.qp.qp_type
mr = agr_obj.mr
length = agr_obj.msg_size + GRH_SIZE if qp_type == e.IBV_QPT_UD \
else agr_obj.msg_size
recv_sge = SGE(mr.buf, length, mr.lkey)
return RecvWR(sg=[recv_sge], num_sge=1)
def get_global_ah(agr_obj, gid_index, port):
gr = GlobalRoute(dgid=agr_obj.ctx.query_gid(port, gid_index),
sgid_index=gid_index)
ah_attr = AHAttr(port_num=port, is_global=1, gr=gr,
dlid=agr_obj.port_attr.lid)
return AH(agr_obj.pd, attr=ah_attr)
def get_global_route(ctx, gid_index=0, port_num=1):
"""
Queries the provided Context's gid <gid_index> and creates a GlobalRoute
object with sgid_index <gid_index> and the queried GID as dgid.
:param ctx: Context object to query
:param gid_index: GID index to query and use. Default: 0, as it's always
valid
:param port_num: Number of the port to query. Default: 1
:return: GlobalRoute object
"""
if ctx.query_port(port_num).gid_tbl_len == 0:
raise unittest.SkipTest(f'Not supported without GID table')
gid = ctx.query_gid(port_num, gid_index)
gr = GlobalRoute(dgid=gid, sgid_index=gid_index)
return gr
def xrc_post_send(agr_obj, qp_num, send_object, send_op=None):
agr_obj.qps = agr_obj.sqp_lst
if send_op:
post_send_ex(agr_obj, send_object, send_op)
else:
post_send(agr_obj, send_object)
def post_send_ex(agr_obj, send_object, send_op=None, qp_idx=0, ah=None):
qp = agr_obj.qps[qp_idx]
qp_type = qp.qp_type
qp.wr_start()
qp.wr_id = 0x123
qp.wr_flags = e.IBV_SEND_SIGNALED
if send_op == e.IBV_QP_EX_WITH_SEND:
qp.wr_send()
elif send_op == e.IBV_QP_EX_WITH_RDMA_WRITE:
qp.wr_rdma_write(agr_obj.rkey, agr_obj.raddr)
elif send_op == e.IBV_QP_EX_WITH_SEND_WITH_IMM:
qp.wr_send_imm(IMM_DATA)
elif send_op == e.IBV_QP_EX_WITH_RDMA_WRITE_WITH_IMM:
qp.wr_rdma_write_imm(agr_obj.rkey, agr_obj.raddr, IMM_DATA)
elif send_op == e.IBV_QP_EX_WITH_RDMA_READ:
qp.wr_rdma_read(agr_obj.rkey, agr_obj.raddr)
elif send_op == e.IBV_QP_EX_WITH_ATOMIC_CMP_AND_SWP:
qp.wr_atomic_cmp_swp(agr_obj.rkey, agr_obj.raddr,
int8b_from_int(2), int8b_from_int(0))
elif send_op == e.IBV_QP_EX_WITH_ATOMIC_FETCH_AND_ADD:
qp.wr_atomic_fetch_add(agr_obj.rkey, agr_obj.raddr,
int8b_from_int(2))
elif send_op == e.IBV_QP_EX_WITH_BIND_MW:
bind_info = MWBindInfo(agr_obj.mr, agr_obj.mr.buf, agr_obj.mr.rkey,
e.IBV_ACCESS_REMOTE_WRITE)
mw = MW(agr_obj.pd, mw_type=e.IBV_MW_TYPE_2)
# A new rkey is needed to be set into bind_info, modify rkey
qp.wr_bind_mw(mw, agr_obj.mr.rkey + 12, bind_info)
qp.wr_send()
if qp_type == e.IBV_QPT_UD:
qp.wr_set_ud_addr(ah, agr_obj.rqps_num[qp_idx], agr_obj.UD_QKEY)
if isinstance(agr_obj, SRDResources):
qp.wr_set_ud_addr(ah, agr_obj.rqps_num[qp_idx], agr_obj.SRD_QKEY)
if qp_type == e.IBV_QPT_XRC_SEND:
qp.wr_set_xrc_srqn(agr_obj.remote_srqn)
if hasattr(agr_obj, 'remote_dct_num'):
if isinstance(agr_obj, Mlx5DcStreamsRes):
stream_id = agr_obj.generate_stream_id(qp_idx)
agr_obj.check_bad_flow(qp_idx)
qp.wr_set_dc_addr_stream(ah, agr_obj.remote_dct_num, DCT_KEY,
stream_id)
else:
qp.wr_set_dc_addr(ah, agr_obj.remote_dct_num, DCT_KEY)
qp.wr_set_sge(send_object)
qp.wr_complete()
def post_send(agr_obj, send_wr, qp_idx=0, ah=None, is_imm=False):
"""
Post a single send WR to the QP. Post_send's second parameter (send bad wr)
is ignored for simplicity. For UD traffic an address vector is added as
well.
:param agr_obj: aggregation object which contains all resources necessary
:param send_wr: Send work request to post send
:param qp_idx: QP index to use
:param ah: The destination address handle
:param is_imm: If True, send with imm_data, relevant for old post send API
:return: None
"""
qp_type = agr_obj.qp.qp_type
if is_imm:
send_wr.imm_data = socket.htonl(IMM_DATA)
if qp_type == e.IBV_QPT_UD:
send_wr.set_wr_ud(ah, agr_obj.rqps_num[qp_idx], agr_obj.UD_QKEY)
if isinstance(agr_obj, SRDResources):
send_wr.set_wr_ud(ah, agr_obj.rqps_num[qp_idx], agr_obj.SRD_QKEY)
agr_obj.qps[qp_idx].post_send(send_wr, None)
def post_recv(agr_obj, recv_wr, qp_idx=0 ,num_wqes=1):
"""
Call the QP's post_recv() method <num_wqes> times. Post_recv's second
parameter (recv bad wr) is ignored for simplicity.
:param recv_wr: Receive work request to post
:param qp_idx: QP index which posts receive work request
:param num_wqes: Number of WQEs to post
:return: None
"""
receive_queue = agr_obj.srq if agr_obj.srq else agr_obj.qps[qp_idx]
for _ in range(num_wqes):
receive_queue.post_recv(recv_wr, None)
def poll_cq(cq, count=1, data=None):
"""
Poll <count> completions from the CQ.
Note: This function calls the blocking poll() method of the CQ
until <count> completions were received. Alternatively, gets a
single CQ event when events are used.
:param cq: CQ to poll from
:param count: How many completions to poll
:param data: In case of a work request with immediate, the immediate data
to be compared after poll
:return: An array of work completions of length <count>, None
when events are used
"""
wcs = []
channel = cq.comp_channel
while count > 0:
if channel:
channel.get_cq_event(cq)
cq.req_notify()
nc, tmp_wcs = cq.poll(count)
for wc in tmp_wcs:
if wc.status != e.IBV_WC_SUCCESS:
raise PyverbsRDMAError('Completion status is {s}'.
format(s=wc_status_to_str(wc.status)),
wc.status)
if data:
if wc.wc_flags & e.IBV_WC_WITH_IMM == 0:
raise PyverbsRDMAError('Completion without immediate')
assert socket.ntohl(wc.imm_data) == data
count -= nc
wcs.extend(tmp_wcs)
return wcs
def poll_cq_ex(cqex, count=1, data=None):
"""
Poll <count> completions from the extended CQ.
:param cq: CQEX to poll from
:param count: How many completions to poll
:param data: In case of a work request with immediate, the immediate data
to be compared after poll
:return: None
"""
try:
poll_attr = PollCqAttr()
ret = cqex.start_poll(poll_attr)
while ret == 2: # ENOENT
ret = cqex.start_poll(poll_attr)
if ret != 0:
raise PyverbsRDMAErrno('Failed to poll CQ')
count -= 1
if cqex.status != e.IBV_WC_SUCCESS:
raise PyverbsRDMAErrno('Completion status is {s}'.
format(s=cqex.status))
if data:
assert data == socket.ntohl(cqex.read_imm_data())
# Now poll the rest of the packets
while count > 0:
ret = cqex.poll_next()
while ret == 2:
ret = cqex.poll_next()
if ret != 0:
raise PyverbsRDMAErrno('Failed to poll CQ')
if cqex.status != e.IBV_WC_SUCCESS:
raise PyverbsRDMAErrno('Completion status is {s}'.
format(s=cqex.status))
if data:
assert data == socket.ntohl(cqex.read_imm_data())
count -= 1
finally:
cqex.end_poll()
def validate(received_str, is_server, msg_size):
"""
Validates the received buffer against the expected result.
The application should set client's send buffer to 'c's and the
server's send buffer to 's's.
If the expected buffer is different than the actual, an exception will
be raised.
:param received_str: The received buffer to check
:param is_server: Indicates whether this is the server (receiver) or
client side
:param msg_size: the message size of the received packet
:return: None
"""
expected_str = msg_size * ('c' if is_server else 's')
received_str = received_str.decode()
if received_str[0:msg_size] == \
expected_str[0:msg_size]:
return
else:
raise PyverbsError(
'Data validation failure: expected {exp}, received {rcv}'.
format(exp=expected_str, rcv=received_str))
def send(agr_obj, send_object, send_op=None, new_send=False, qp_idx=0, ah=None, is_imm=False):
if isinstance(agr_obj, XRCResources):
agr_obj.qps = agr_obj.sqp_lst
if new_send:
return post_send_ex(agr_obj, send_object, send_op, qp_idx, ah)
return post_send(agr_obj, send_object, qp_idx, ah, is_imm)
def traffic(client, server, iters, gid_idx, port, is_cq_ex=False, send_op=None,
new_send=False, is_imm=False):
"""
Runs basic traffic between two sides
:param client: client side, clients base class is BaseTraffic
:param server: server side, servers base class is BaseTraffic
:param iters: number of traffic iterations
:param gid_idx: local gid index
:param port: IB port
:param is_cq_ex: If True, use poll_cq_ex() rather than poll_cq()
:param send_op: The send_wr opcode.
:param new_send: If True use new post send API.
:param is_imm: If True, send with imm_data, relevant for old post send API.
:return:
"""
if is_datagram_qp(client):
ah_client = get_global_ah(client, gid_idx, port)
ah_server = get_global_ah(server, gid_idx, port)
else:
ah_client = None
ah_server = None
poll = poll_cq_ex if is_cq_ex else poll_cq
if send_op == e.IBV_QP_EX_WITH_SEND_WITH_IMM or \
send_op == e.IBV_QP_EX_WITH_RDMA_WRITE_WITH_IMM or \
is_imm:
imm_data = IMM_DATA
else:
imm_data = None
s_recv_wr = get_recv_wr(server)
c_recv_wr = get_recv_wr(client)
for qp_idx in range(server.qp_count):
# prepare the receive queue with RecvWR
post_recv(client, c_recv_wr, qp_idx=qp_idx)
post_recv(server, s_recv_wr, qp_idx=qp_idx)
read_offset = GRH_SIZE if client.qp.qp_type == e.IBV_QPT_UD else 0
for _ in range(iters):
for qp_idx in range(server.qp_count):
if imm_data:
c_send_wr, c_sg = get_send_elements(client, False, opcode=e.IBV_WR_SEND_WITH_IMM)
else:
c_send_wr, c_sg = get_send_elements(client, False)
if client.use_mr_prefetch:
flags = e._IBV_ADVISE_MR_FLAG_FLUSH
if client.use_mr_prefetch == 'async':
flags = 0
prefetch_mrs(client, [c_sg], advice=client.prefetch_advice,
flags=flags)
c_send_object = c_sg if send_op else c_send_wr
send(client, c_send_object, send_op, new_send, qp_idx,
ah_client, is_imm=is_imm)
poll(client.cq)
poll(server.cq, data=imm_data)
post_recv(server, s_recv_wr, qp_idx=qp_idx)
msg_received = server.mr.read(server.msg_size, read_offset)
validate(msg_received, True, server.msg_size)
if imm_data:
s_send_wr, s_sg = get_send_elements(server, True, opcode=e.IBV_WR_SEND_WITH_IMM)
else:
s_send_wr, s_sg = get_send_elements(server, True)
if server.use_mr_prefetch:
flags = e._IBV_ADVISE_MR_FLAG_FLUSH
if server.use_mr_prefetch == 'async':
flags = 0
prefetch_mrs(server, [s_sg], advice=server.prefetch_advice,
flags=flags)
s_send_object = s_sg if send_op else s_send_wr
send(server, s_send_object, send_op, new_send, qp_idx,
ah_server, is_imm=is_imm)
poll(server.cq)
poll(client.cq, data=imm_data)
post_recv(client, c_recv_wr, qp_idx=qp_idx)
msg_received = client.mr.read(client.msg_size, read_offset)
validate(msg_received, False, client.msg_size)
def gen_outer_headers(msg_size):
"""
Generates outer headers for encapsulation with VXLAN: Ethernet, IPv4, UDP
and VXLAN using the values from the PacketConst class.
:param msg_size: The size of the inner message
:return: Outer headers
"""
# Ethernet Header
outer = struct.pack('!6s6s',
bytes.fromhex(PacketConsts.DST_MAC.replace(':', '')),
bytes.fromhex(PacketConsts.SRC_MAC.replace(':', '')))
outer += PacketConsts.ETHER_TYPE_IPV4.to_bytes(2, 'big')
# IPv4 Header
ip_total_len = msg_size + PacketConsts.UDP_HEADER_SIZE + \
PacketConsts.IPV4_HEADER_SIZE + \
PacketConsts.VXLAN_HEADER_SIZE
outer += struct.pack('!2B3H2BH4s4s', (PacketConsts.IP_V4 << 4) +
PacketConsts.IHL, 0, ip_total_len, 0,
PacketConsts.IP_V4_FLAGS << 13,
PacketConsts.TTL_HOP_LIMIT, socket.IPPROTO_UDP, 0,
socket.inet_aton(PacketConsts.SRC_IP),
socket.inet_aton(PacketConsts.DST_IP))
# UDP Header
outer += struct.pack('!4H', PacketConsts.SRC_PORT, PacketConsts.VXLAN_PORT,
msg_size + PacketConsts.UDP_HEADER_SIZE + 8, 0)
# VXLAN Header
outer += struct.pack('!II', PacketConsts.VXLAN_FLAGS << 24,
PacketConsts.VXLAN_VNI << 8)
return outer
def gen_packet(msg_size, l3=PacketConsts.IP_V4, l4=PacketConsts.UDP_PROTO, with_vlan=False, **kwargs):
"""
Generates a Eth | IPv4 or IPv6 | UDP or TCP packet with hardcoded values in
the headers and randomized payload.
:param msg_size: total packet size
:param l3: Packet layer 3 type: 4 for IPv4 or 6 for IPv6
:param l4: Packet layer 4 type: 'tcp' or 'udp'
:param with_vlan: if True add VLAN header to the packet
:param kwargs: Arguments:
* *src_mac*
Source MAC address to use in the packet.
:return: packet
"""
l3_header_size = getattr(PacketConsts, f'IPV{str(l3)}_HEADER_SIZE')
l4_header_size = getattr(PacketConsts, f'{l4.upper()}_HEADER_SIZE')
payload_size = max(0, msg_size - l3_header_size - l4_header_size -
PacketConsts.ETHER_HEADER_SIZE)
next_hdr = getattr(socket, f'IPPROTO_{l4.upper()}')
ip_total_len = msg_size - PacketConsts.ETHER_HEADER_SIZE
# Ethernet header
src_mac = kwargs.get('src_mac', bytes.fromhex(PacketConsts.SRC_MAC.replace(':', '')))
packet = struct.pack('!6s6s',
bytes.fromhex(PacketConsts.DST_MAC.replace(':', '')), src_mac)
if with_vlan:
packet += struct.pack('!HH', PacketConsts.VLAN_TPID, (PacketConsts.VLAN_PRIO << 13) +
(PacketConsts.VLAN_CFI << 12) + PacketConsts.VLAN_ID)
payload_size -= PacketConsts.VLAN_HEADER_SIZE
ip_total_len -= PacketConsts.VLAN_HEADER_SIZE
if l3 == PacketConsts.IP_V4:
packet += PacketConsts.ETHER_TYPE_IPV4.to_bytes(2, 'big')
else:
packet += PacketConsts.ETHER_TYPE_IPV6.to_bytes(2, 'big')
if l3 == PacketConsts.IP_V4:
# IPv4 header
packet += struct.pack('!2B3H2BH4s4s', (PacketConsts.IP_V4 << 4) +
PacketConsts.IHL, 0, ip_total_len, 0,
PacketConsts.IP_V4_FLAGS << 13,
PacketConsts.TTL_HOP_LIMIT, next_hdr, 0,
socket.inet_aton(PacketConsts.SRC_IP),
socket.inet_aton(PacketConsts.DST_IP))
else:
# IPv6 header
packet += struct.pack('!IH2B16s16s', (PacketConsts.IP_V6 << 28),
ip_total_len, next_hdr, PacketConsts.TTL_HOP_LIMIT,
socket.inet_pton(socket.AF_INET6, PacketConsts.SRC_IP6),
socket.inet_pton(socket.AF_INET6, PacketConsts.DST_IP6))
if l4 == PacketConsts.UDP_PROTO:
# UDP header
packet += struct.pack('!4H', PacketConsts.SRC_PORT,
PacketConsts.DST_PORT,
payload_size + PacketConsts.UDP_HEADER_SIZE, 0)
else:
# TCP header
packet += struct.pack('!2H2I4H', PacketConsts.SRC_PORT,
PacketConsts.DST_PORT, 0, 0,
PacketConsts.TCP_HEADER_SIZE_WORDS << 12,
PacketConsts.WINDOW_SIZE, 0, 0)
# Payload
packet += str.encode('a' * payload_size)
return packet
def get_send_elements_raw_qp(agr_obj, l3=PacketConsts.IP_V4,
l4=PacketConsts.UDP_PROTO, with_vlan=False, **packet_args):
"""
Creates a single SGE and a single Send WR for agr_obj's RAW QP type. The
content of the message is Eth | Ipv4 | UDP packet.
:param agr_obj: Aggregation object which contains all resources necessary
:param l3: Packet layer 3 type: 4 for IPv4 or 6 for IPv6
:param l4: Packet layer 4 type: 'tcp' or 'udp'
:param with_vlan: if True add VLAN header to the packet
:param packet_args: Pass packet_args to gen_packets method.
:return: send wr, its SGE, and message
"""
mr = agr_obj.mr
msg = gen_packet(agr_obj.msg_size, l3, l4, with_vlan, **packet_args)
mr.write(msg, agr_obj.msg_size)
sge = SGE(mr.buf, agr_obj.msg_size, mr.lkey)
send_wr = SendWR(opcode=e.IBV_WR_SEND, num_sge=1, sg=[sge])
return send_wr, sge, msg
def validate_raw(msg_received, msg_expected, skip_idxs):
size = len(msg_expected)
for i in range(size):
if (msg_received[i] != msg_expected[i]) and i not in skip_idxs:
err_msg = f'Data validation failure:\nexpected {msg_expected}\n\nreceived {msg_received}'
raise PyverbsError(err_msg)
def raw_traffic(client, server, iters, l3=PacketConsts.IP_V4,
l4=PacketConsts.UDP_PROTO, with_vlan=False, expected_packet=None, skip_idxs=[]):
"""
Runs raw ethernet traffic between two sides
:param client: client side, clients base class is BaseTraffic
:param server: server side, servers base class is BaseTraffic
:param iters: number of traffic iterations
:param l3: Packet layer 3 type: 4 for IPv4 or 6 for IPv6
:param l4: Packet layer 4 type: 'tcp' or 'udp'
:param with_vlan: if True add VLAN header to the packet
:param expected_packet: Expected packet for validation (when different from
the originally sent).
:param skip_idxs: indexes to skip during packet validation
:return:
"""
s_recv_wr = get_recv_wr(server)
c_recv_wr = get_recv_wr(client)
for qp_idx in range(server.qp_count):
# prepare the receive queue with RecvWR
post_recv(client, c_recv_wr, qp_idx=qp_idx)
post_recv(server, s_recv_wr, qp_idx=qp_idx)
read_offset = 0
poll = poll_cq_ex if isinstance(client.cq, CQEX) else poll_cq
for _ in range(iters):
for qp_idx in range(server.qp_count):
c_send_wr, c_sg, msg = get_send_elements_raw_qp(client, l3, l4, with_vlan)
send(client, c_send_wr, e.IBV_WR_SEND, False, qp_idx)
poll(client.cq)
poll(server.cq)
post_recv(server, s_recv_wr, qp_idx=qp_idx)
msg_received = server.mr.read(server.msg_size, read_offset)
# Validate received packet
validate_raw(msg_received,
expected_packet if expected_packet else msg, skip_idxs)
def rdma_traffic(client, server, iters, gid_idx, port, new_send=False,
send_op=None):
"""
Runs basic RDMA traffic between two sides. No receive WQEs are posted. For
RDMA send with immediate, use traffic().
:param client: client side, clients base class is BaseTraffic
:param server: server side, servers base class is BaseTraffic
:param iters: number of traffic iterations
:param gid_idx: local gid index
:param port: IB port
:param new_send: If True use new post send API.
:param send_op: The send_wr opcode.
:return:
"""
# Using the new post send API, we need the SGE, not the SendWR
if isinstance(client, Mlx5DcResources) or \
isinstance(client, SRDResources):
ah_client = get_global_ah(client, gid_idx, port)
ah_server = get_global_ah(server, gid_idx, port)
else:
ah_client = None
ah_server = None
send_element_idx = 1 if new_send else 0
same_side_check = send_op in [e.IBV_QP_EX_WITH_RDMA_READ,
e.IBV_QP_EX_WITH_ATOMIC_CMP_AND_SWP,
e.IBV_QP_EX_WITH_ATOMIC_FETCH_AND_ADD,
e.IBV_WR_RDMA_READ]
for _ in range(iters):
c_send_wr = get_send_elements(client, False, send_op)[send_element_idx]
send(client, c_send_wr, send_op, new_send, ah=ah_client)
poll_cq(client.cq)
if same_side_check:
msg_received = client.mr.read(client.msg_size, 0)
else:
msg_received = server.mr.read(server.msg_size, 0)
validate(msg_received, False if same_side_check else True,
server.msg_size)
s_send_wr = get_send_elements(server, True, send_op)[send_element_idx]
if same_side_check:
client.mr.write('c' * client.msg_size, client.msg_size)
send(server, s_send_wr, send_op, new_send, ah=ah_server)
poll_cq(server.cq)
if same_side_check:
msg_received = server.mr.read(client.msg_size, 0)
else:
msg_received = client.mr.read(server.msg_size, 0)
validate(msg_received, True if same_side_check else False,
client.msg_size)
if same_side_check:
server.mr.write('s' * server.msg_size, server.msg_size)
def atomic_traffic(client, server, iters, gid_idx, port, new_send=False,
send_op=None, receiver_val=1, sender_val=2):
"""
Runs atomic traffic between two sides.
:param client: Client side, clients base class is BaseTraffic
:param server: Server side, servers base class is BaseTraffic
:param iters: Number of traffic iterations
:param gid_idx: Local gid index
:param port: IB port
:param new_send: If True use new post send API.
:param send_op: The send_wr opcode.
:param receiver_val: The requested value on the reciver MR.
:param sender_val: The requested value on the sender SendWR.
"""
send_element_idx = 1 if new_send else 0
for _ in range(iters):
client.mr.write(int.to_bytes(sender_val, 1, byteorder='big') * 8, 8)
server.mr.write(int.to_bytes(receiver_val, 1, byteorder='big') * 8, 8)
c_send_wr = get_atomic_send_elements(client, send_op,
cmp_add=sender_val,
swap=0)[send_element_idx]
if isinstance(server, XRCResources):
c_send_wr.set_qp_type_xrc(server.srq.get_srq_num())
send(client, c_send_wr, send_op, new_send)
poll_cq(client.cq)
validate_atomic(send_op, server, client, receiver_val=receiver_val,
send_cmp_add=sender_val, send_swp=0)
server.mr.write(int.to_bytes(sender_val, 1, byteorder='big') * 8, 8)
client.mr.write(int.to_bytes(receiver_val, 1, byteorder='big') * 8, 8)
s_send_wr = get_atomic_send_elements(server, send_op,
cmp_add=sender_val,
swap=0)[send_element_idx]
if isinstance(client, XRCResources):
s_send_wr.set_qp_type_xrc(client.srq.get_srq_num())
send(server, s_send_wr, send_op, new_send)
poll_cq(server.cq)
validate_atomic(send_op, client, server, receiver_val=receiver_val,
send_cmp_add=sender_val, send_swp=0)
def validate_atomic(opcode, recv_player, send_player, receiver_val,
send_cmp_add, send_swp):
"""
Validate the data after atomic operations. The expected data in each side of
traffic depends on the atomic type and the sender SendWR values.
:param opcode: The atomic opcode.
:param recv_player: The receiver player.
:param send_player: The sender player.
:param receiver_val: The value on the receiver MR before the atomic action.
:param send_cmp_add: The send WR compare/add value depende on the atomic
type.
:param send_swp: The send WR swap value, used only in atomic compare and
swap.
"""
send_expected = receiver_val
if opcode in [e.IBV_WR_ATOMIC_CMP_AND_SWP,
e.IBV_QP_EX_WITH_ATOMIC_CMP_AND_SWP]:
recv_expected = send_swp if receiver_val == send_cmp_add \
else receiver_val
if opcode in [e.IBV_WR_ATOMIC_FETCH_AND_ADD,
e.IBV_QP_EX_WITH_ATOMIC_FETCH_AND_ADD]:
recv_expected = receiver_val + send_cmp_add
send_actual = int.from_bytes(send_player.mr.read(length=8, offset=0),
byteorder='big')
recv_actual = int.from_bytes(recv_player.mr.read(length=8, offset=0),
byteorder='big')
if send_actual != int8b_from_int(send_expected):
raise PyverbsError(
'Atomic sender data validation failed: expected {exp}, received {rcv}'.
format(exp=int8b_from_int(send_expected), rcv=send_actual))
if recv_actual != int8b_from_int(recv_expected):
raise PyverbsError(
'Atomic reciver data validation failed: expected {exp}, received {rcv}'.
format(exp=int8b_from_int(recv_expected), rcv=recv_actual))
def int8b_from_int(num):
"""
Duplicate one-byte value int to 8 bytes.
e.g. 1 => b'\x01\x01\x01\x01\x01\x01\x01\x01' == 72340172838076673
:param num: One byte int number (0 <= num < 256).
:return: The new number in int format.
"""
num_multi_8_str = int.to_bytes(num, 1, byteorder='big') * 8
return int.from_bytes(num_multi_8_str, byteorder='big')
def get_atomic_send_elements(agr_obj, opcode, cmp_add=0, swap=0):
"""
Creates a single SGE and a single Send WR for atomic operations.
:param agr_obj: Aggregation object which contains all resources necessary
:param opcode: The send opcode
:param cmp_add: The compare or add value (depends on the opcode).
:param swap: The swap value.
:return: Send WR and its SGE
"""
sge = SGE(agr_obj.mr.buf, 8, agr_obj.mr_lkey)
send_wr = SendWR(opcode=opcode, num_sge=1, sg=[sge])
send_wr.set_wr_atomic(rkey=int(agr_obj.rkey), addr=int(agr_obj.raddr),
compare_add=int8b_from_int(cmp_add),
swap=int8b_from_int(swap))
return send_wr, sge
def xrc_traffic(client, server, is_cq_ex=False, send_op=None):
"""
Runs basic xrc traffic, this function assumes that number of QPs, which
server and client have are equal, server.send_qp[i] is connected to
client.recv_qp[i], each time server.send_qp[i] sends a message, it is
redirected to client.srq because client.recv_qp[i] and client.srq are
under the same xrcd. The traffic flow in the opposite direction is the same.
:param client: Aggregation object of the active side, should be an instance
of XRCResources class
:param server: Aggregation object of the passive side, should be an instance
of XRCResources class
:param is_cq_ex: If True, use poll_cq_ex() rather than poll_cq()
:param send_op: If not None, new post send API is assumed.
:return: None
"""
poll = poll_cq_ex if is_cq_ex else poll_cq
server.remote_srqn = client.srq.get_srq_num()
client.remote_srqn = server.srq.get_srq_num()
s_recv_wr = get_recv_wr(server)
c_recv_wr = get_recv_wr(client)
post_recv(client, c_recv_wr, num_wqes=client.qp_count*client.num_msgs)
post_recv(server, s_recv_wr, num_wqes=server.qp_count*server.num_msgs)
# Using the new post send API, we need the SGE, not the SendWR
send_element_idx = 1 if send_op else 0
for _ in range(client.num_msgs):
for i in range(server.qp_count):
c_send_wr = get_send_elements(client, False)[send_element_idx]
if send_op is None:
c_send_wr.set_qp_type_xrc(client.remote_srqn)
xrc_post_send(client, i, c_send_wr, send_op)
poll(client.cq)
poll(server.cq)
msg_received = server.mr.read(server.msg_size, 0)
validate(msg_received, True, server.msg_size)
s_send_wr = get_send_elements(server, True)[send_element_idx]
if send_op is None:
s_send_wr.set_qp_type_xrc(server.remote_srqn)
xrc_post_send(server, i, s_send_wr, send_op)
poll(server.cq)
poll(client.cq)
msg_received = client.mr.read(client.msg_size, 0)
validate(msg_received, False, client.msg_size)
# Decorators
def requires_odp(qp_type, required_odp_caps):
def outer(func):
def inner(instance):
odp_supported(instance.ctx, qp_type, required_odp_caps)
if getattr(instance, 'is_implicit', False):
odp_implicit_supported(instance.ctx)
return func(instance)
return inner
return outer
def requires_root_on_eth(port_num=1):
def outer(func):
def inner(instance):
if not (is_eth(instance.ctx, port_num) and is_root()):
raise unittest.SkipTest('Must be run by root on Ethernet link layer')
return func(instance)
return inner
return outer
def requires_mcast_support():
"""
Check if the device support multicast
return: True if multicast is supported
"""
def outer(func):
def inner(instance):
ctx = d.Context(name=instance.dev_name)
if ctx.query_device().max_mcast_grp == 0:
raise unittest.SkipTest('Multicast is not supported on this device')
return func(instance)
return inner
return outer
def odp_supported(ctx, qp_type, required_odp_caps):
"""
Check device ODP capabilities, support only send/recv so far.
:param ctx: Device Context
:param qp_type: QP type ('rc', 'ud' or 'uc')
:param required_odp_caps: ODP Capability mask of specified device
:return: None
"""
odp_caps = ctx.query_device_ex().odp_caps
if odp_caps.general_caps == 0:
raise unittest.SkipTest('ODP is not supported - No ODP caps')
qp_odp_caps = getattr(odp_caps, '{}_odp_caps'.format(qp_type))
if required_odp_caps & qp_odp_caps != required_odp_caps:
raise unittest.SkipTest('ODP is not supported - ODP recv/send is not supported')
def odp_implicit_supported(ctx):
"""
Check device ODP implicit capability.
:param ctx: Device Context
:return: None
"""
odp_caps = ctx.query_device_ex().odp_caps
has_odp_implicit = odp_caps.general_caps & e.IBV_ODP_SUPPORT_IMPLICIT
if has_odp_implicit == 0:
raise unittest.SkipTest('ODP implicit is not supported')
def requires_eswitch_on(func):
def inner(instance):
if not (is_eth(d.Context(name=instance.dev_name), instance.ib_port)
and eswitch_mode_check(instance.dev_name)):
raise unittest.SkipTest('Must be run on Ethernet link layer with Eswitch on')
return func(instance)
return inner
def eswitch_mode_check(dev_name):
pci_name = glob.glob(f'/sys/bus/pci/devices/*/infiniband/{dev_name}')
if not pci_name:
raise unittest.SkipTest(f'Could not find the PCI device of {dev_name}')
pci_name = pci_name[0].split('/')[5]
eswicth_off_msg = f'Device {dev_name} must be in switchdev mode'
try:
cmd_out = subprocess.check_output(['devlink', 'dev', 'eswitch', 'show', f'pci/{pci_name}'],
stderr=subprocess.DEVNULL)
if 'switchdev' not in str(cmd_out):
raise unittest.SkipTest(eswicth_off_msg)
except subprocess.CalledProcessError:
raise unittest.SkipTest(eswicth_off_msg)
return True
def requires_huge_pages():
def outer(func):
def inner(instance):
huge_pages_supported()
return func(instance)
return inner
return outer
def skip_unsupported(func):
def func_wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except PyverbsRDMAError as ex:
if ex.error_code in [errno.EOPNOTSUPP, errno.EPROTONOSUPPORT]:
raise unittest.SkipTest(f'Operation not supported ({str(ex)})')
raise ex
return func_wrapper
def huge_pages_supported():
"""
Check if huge pages are supported in the kernel.
:return: None
"""
huge_path = '/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages'
if not os.path.isfile(huge_path):
raise unittest.SkipTest('Huge pages of size 2M is not supported in this platform')
with open(huge_path, 'r') as f:
if not int(f.read()):
raise unittest.SkipTest('There are no huge pages of size 2M allocated')
def prefetch_mrs(agr_obj, sg_list, advice=e._IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE,
flags=e._IBV_ADVISE_MR_FLAG_FLUSH):
"""
Pre-fetch a range of an on-demand paging MR.
:param agr_obj: Aggregation object which contains all resources necessary
:param sg_list: SGE list
:param advice: The requested advice value
:param flags: Describes the properties of the advice operation
:return: None
"""
try:
agr_obj.pd.advise_mr(advice, flags, sg_list)
except PyverbsRDMAError as ex:
if ex.error_code == errno.EOPNOTSUPP:
raise unittest.SkipTest(f'Advise MR with flags ({flags}) and advice ({advice}) is not supported')
raise ex
def is_eth(ctx, port_num):
"""
Querires the device's context's <port_num> port for its link layer.
:param ctx: The Context to query
:param port_num: Which Context's port to query
:return: True if the port's link layer is Ethernet, else False
"""
return ctx.query_port(port_num).link_layer == e.IBV_LINK_LAYER_ETHERNET
def is_datagram_qp(agr_obj):
if agr_obj.qp.qp_type == e.IBV_QPT_UD or \
isinstance(agr_obj, SRDResources) or \
isinstance(agr_obj, Mlx5DcResources):
return True
return False
def is_root():
return os.geteuid() == 0