blob: fd028d5e1b7b85ba875f1d05c9888e6eb25c8e77 [file] [log] [blame] [edit]
/*
* Copyright (c) 2006-2016 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <config.h>
#include <assert.h>
#include <stdlib.h>
#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <util/compiler.h>
#include "libcxgb4.h"
#ifdef STATS
struct c4iw_stats c4iw_stats;
#endif
static void copy_wr_to_sq(struct t4_wq *wq, union t4_wr *wqe, u8 len16)
{
u64 *src, *dst;
src = (u64 *)wqe;
dst = (u64 *)((u8 *)wq->sq.queue + wq->sq.wq_pidx * T4_EQ_ENTRY_SIZE);
if (t4_sq_onchip(wq)) {
len16 = align(len16, 4);
/* In onchip mode the copy below will be made to WC memory and
* could trigger DMA. In offchip mode the copy below only
* queues the WQE, DMA cannot start until t4_ring_sq_db
* happens */
mmio_wc_start();
}
while (len16) {
*dst++ = *src++;
if (dst == (u64 *)&wq->sq.queue[wq->sq.size])
dst = (u64 *)wq->sq.queue;
*dst++ = *src++;
if (dst == (u64 *)&wq->sq.queue[wq->sq.size])
dst = (u64 *)wq->sq.queue;
len16--;
/* NOTE len16 cannot be large enough to write to the
same sq.queue memory twice in this loop */
}
if (t4_sq_onchip(wq))
mmio_flush_writes();
}
static void copy_wr_to_rq(struct t4_wq *wq, union t4_recv_wr *wqe, u8 len16)
{
u64 *src, *dst;
src = (u64 *)wqe;
dst = (u64 *)((u8 *)wq->rq.queue + wq->rq.wq_pidx * T4_EQ_ENTRY_SIZE);
while (len16) {
*dst++ = *src++;
if (dst >= (u64 *)&wq->rq.queue[wq->rq.size])
dst = (u64 *)wq->rq.queue;
*dst++ = *src++;
if (dst >= (u64 *)&wq->rq.queue[wq->rq.size])
dst = (u64 *)wq->rq.queue;
len16--;
}
}
void c4iw_copy_wr_to_srq(struct t4_srq *srq, union t4_recv_wr *wqe, u8 len16)
{
u64 *src, *dst;
src = (u64 *)wqe;
dst = (u64 *)((u8 *)srq->queue + srq->wq_pidx * T4_EQ_ENTRY_SIZE);
while (len16) {
*dst++ = *src++;
if (dst >= (u64 *)&srq->queue[srq->size])
dst = (u64 *)srq->queue;
*dst++ = *src++;
if (dst >= (u64 *)&srq->queue[srq->size])
dst = (u64 *)srq->queue;
len16--;
}
}
static int build_immd(struct t4_sq *sq, struct fw_ri_immd *immdp,
struct ibv_send_wr *wr, int max, u32 *plenp)
{
u8 *dstp, *srcp;
u32 plen = 0;
int i;
int len;
dstp = (u8 *)immdp->data;
for (i = 0; i < wr->num_sge; i++) {
if ((plen + wr->sg_list[i].length) > max)
return -EMSGSIZE;
srcp = (u8 *)(unsigned long)wr->sg_list[i].addr;
plen += wr->sg_list[i].length;
len = wr->sg_list[i].length;
memcpy(dstp, srcp, len);
dstp += len;
srcp += len;
}
len = ROUND_UP(plen + 8, 16) - (plen + 8);
if (len)
memset(dstp, 0, len);
immdp->op = FW_RI_DATA_IMMD;
immdp->r1 = 0;
immdp->r2 = 0;
immdp->immdlen = htobe32(plen);
*plenp = plen;
return 0;
}
static int build_isgl(__be64 *queue_start, __be64 *queue_end,
struct fw_ri_isgl *isglp, struct ibv_sge *sg_list,
int num_sge, u32 *plenp)
{
int i;
u32 plen = 0;
__be64 *flitp;
if ((__be64 *)isglp == queue_end)
isglp = (struct fw_ri_isgl *)queue_start;
flitp = (__be64 *)isglp->sge;
for (i = 0; i < num_sge; i++) {
if ((plen + sg_list[i].length) < plen)
return -EMSGSIZE;
plen += sg_list[i].length;
*flitp = htobe64(((u64)sg_list[i].lkey << 32) |
sg_list[i].length);
if (++flitp == queue_end)
flitp = queue_start;
*flitp = htobe64(sg_list[i].addr);
if (++flitp == queue_end)
flitp = queue_start;
}
*flitp = 0;
isglp->op = FW_RI_DATA_ISGL;
isglp->r1 = 0;
isglp->nsge = htobe16(num_sge);
isglp->r2 = 0;
if (plenp)
*plenp = plen;
return 0;
}
static int build_rdma_send(struct t4_sq *sq, union t4_wr *wqe,
struct ibv_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
int ret;
if (wr->num_sge > T4_MAX_SEND_SGE)
return -EINVAL;
switch (wr->opcode) {
case IBV_WR_SEND:
if (wr->send_flags & IBV_SEND_SOLICITED)
wqe->send.sendop_pkd = htobe32(FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_SE));
else
wqe->send.sendop_pkd = htobe32(FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND));
wqe->send.stag_inv = 0;
break;
case IBV_WR_SEND_WITH_INV:
if (wr->send_flags & IBV_SEND_SOLICITED)
wqe->send.sendop_pkd = htobe32(FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_SE_INV));
else
wqe->send.sendop_pkd = htobe32(FW_RI_SEND_WR_SENDOP_V(FW_RI_SEND_WITH_INV));
wqe->send.stag_inv = htobe32(wr->invalidate_rkey);
break;
default:
return -EINVAL;
}
wqe->send.r3 = 0;
wqe->send.r4 = 0;
plen = 0;
if (wr->num_sge) {
if (wr->send_flags & IBV_SEND_INLINE) {
ret = build_immd(sq, wqe->send.u.immd_src, wr,
T4_MAX_SEND_INLINE, &plen);
if (ret)
return ret;
size = sizeof wqe->send + sizeof(struct fw_ri_immd) +
plen;
} else {
ret = build_isgl((__be64 *)sq->queue,
(__be64 *)&sq->queue[sq->size],
wqe->send.u.isgl_src,
wr->sg_list, wr->num_sge, &plen);
if (ret)
return ret;
size = sizeof wqe->send + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof (struct fw_ri_sge);
}
} else {
wqe->send.u.immd_src[0].op = FW_RI_DATA_IMMD;
wqe->send.u.immd_src[0].r1 = 0;
wqe->send.u.immd_src[0].r2 = 0;
wqe->send.u.immd_src[0].immdlen = 0;
size = sizeof wqe->send + sizeof(struct fw_ri_immd);
plen = 0;
}
*len16 = DIV_ROUND_UP(size, 16);
wqe->send.plen = htobe32(plen);
return 0;
}
static int build_rdma_write(struct t4_sq *sq, union t4_wr *wqe,
struct ibv_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
int ret;
if (wr->num_sge > T4_MAX_SEND_SGE)
return -EINVAL;
if (wr->opcode == IBV_WR_RDMA_WRITE_WITH_IMM)
wqe->write.iw_imm_data.ib_imm_data.imm_data32 = wr->imm_data;
else
wqe->write.iw_imm_data.ib_imm_data.imm_data32 = 0;
wqe->write.stag_sink = htobe32(wr->wr.rdma.rkey);
wqe->write.to_sink = htobe64(wr->wr.rdma.remote_addr);
if (wr->num_sge) {
if (wr->send_flags & IBV_SEND_INLINE) {
ret = build_immd(sq, wqe->write.u.immd_src, wr,
T4_MAX_WRITE_INLINE, &plen);
if (ret)
return ret;
size = sizeof wqe->write + sizeof(struct fw_ri_immd) +
plen;
} else {
ret = build_isgl((__be64 *)sq->queue,
(__be64 *)&sq->queue[sq->size],
wqe->write.u.isgl_src,
wr->sg_list, wr->num_sge, &plen);
if (ret)
return ret;
size = sizeof wqe->write + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof (struct fw_ri_sge);
}
} else {
wqe->write.u.immd_src[0].op = FW_RI_DATA_IMMD;
wqe->write.u.immd_src[0].r1 = 0;
wqe->write.u.immd_src[0].r2 = 0;
wqe->write.u.immd_src[0].immdlen = 0;
size = sizeof wqe->write + sizeof(struct fw_ri_immd);
plen = 0;
}
*len16 = DIV_ROUND_UP(size, 16);
wqe->write.plen = htobe32(plen);
return 0;
}
static void build_immd_cmpl(struct t4_sq *sq, struct fw_ri_immd_cmpl *immdp,
struct ibv_send_wr *wr)
{
memcpy((u8 *)immdp->data, (u8 *)(uintptr_t)wr->sg_list->addr, 16);
memset(immdp->r1, 0, 6);
immdp->op = FW_RI_DATA_IMMD;
immdp->immdlen = 16;
}
static void build_rdma_write_cmpl(struct t4_sq *sq,
struct fw_ri_rdma_write_cmpl_wr *wcwr,
struct ibv_send_wr *wr, u8 *len16)
{
u32 plen;
int size;
/*
* This code assumes the struct fields preceding the write isgl fit
* in one 64B WR slot. This is because the WQE is built directly in
* the dma queue, and wrapping is only handled by the code buildling
* sgls. IE the "fixed part" of the wr structs must all fit in 64B.
* The WQE build code should probably be redesigned to avoid this
* restriction, but for now just add a static_assert() to catch if
* this WQE struct gets too big.
*/
static_assert(offsetof(struct fw_ri_rdma_write_cmpl_wr, u) <= 64,
"WQE structure too BIG!");
wcwr->stag_sink = htobe32(wr->wr.rdma.rkey);
wcwr->to_sink = htobe64(wr->wr.rdma.remote_addr);
if (wr->next->opcode == IBV_WR_SEND)
wcwr->stag_inv = 0;
else
wcwr->stag_inv = htobe32(wr->next->invalidate_rkey);
wcwr->r2 = 0;
wcwr->r3 = 0;
/* SEND_INV SGL */
if (wr->next->send_flags & IBV_SEND_INLINE)
build_immd_cmpl(sq, &wcwr->u_cmpl.immd_src, wr->next);
else
build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size],
&wcwr->u_cmpl.isgl_src, wr->next->sg_list, 1, NULL);
/* WRITE SGL */
build_isgl((__be64 *)sq->queue, (__be64 *)&sq->queue[sq->size],
wcwr->u.isgl_src, wr->sg_list, wr->num_sge, &plen);
size = sizeof(*wcwr) + sizeof(struct fw_ri_isgl) +
wr->num_sge * sizeof(struct fw_ri_sge);
wcwr->plen = htobe32(plen);
*len16 = DIV_ROUND_UP(size, 16);
}
static int build_rdma_read(union t4_wr *wqe, struct ibv_send_wr *wr, u8 *len16)
{
if (wr->num_sge > 1)
return -EINVAL;
if (wr->num_sge) {
wqe->read.stag_src = htobe32(wr->wr.rdma.rkey);
wqe->read.to_src_hi = htobe32((u32)(wr->wr.rdma.remote_addr >>32));
wqe->read.to_src_lo = htobe32((u32)wr->wr.rdma.remote_addr);
wqe->read.stag_sink = htobe32(wr->sg_list[0].lkey);
wqe->read.plen = htobe32(wr->sg_list[0].length);
wqe->read.to_sink_hi = htobe32((u32)(wr->sg_list[0].addr >> 32));
wqe->read.to_sink_lo = htobe32((u32)(wr->sg_list[0].addr));
} else {
wqe->read.stag_src = htobe32(2);
wqe->read.to_src_hi = 0;
wqe->read.to_src_lo = 0;
wqe->read.stag_sink = htobe32(2);
wqe->read.plen = 0;
wqe->read.to_sink_hi = 0;
wqe->read.to_sink_lo = 0;
}
wqe->read.r2 = 0;
wqe->read.r5 = 0;
*len16 = DIV_ROUND_UP(sizeof wqe->read, 16);
return 0;
}
static int build_rdma_recv(struct t4_rq *rq, union t4_recv_wr *wqe,
struct ibv_recv_wr *wr, u8 *len16)
{
int ret;
ret = build_isgl((__be64 *)rq->queue, (__be64 *)&rq->queue[rq->size],
&wqe->recv.isgl, wr->sg_list, wr->num_sge, NULL);
if (ret)
return ret;
*len16 = DIV_ROUND_UP(sizeof wqe->recv +
wr->num_sge * sizeof(struct fw_ri_sge), 16);
return 0;
}
static int build_srq_recv(union t4_recv_wr *wqe, struct ibv_recv_wr *wr,
u8 *len16)
{
int ret;
ret = build_isgl((__be64 *)wqe, (__be64 *)(wqe + 1),
&wqe->recv.isgl, wr->sg_list, wr->num_sge, NULL);
if (ret)
return ret;
*len16 = DIV_ROUND_UP(sizeof(wqe->recv) +
wr->num_sge * sizeof(struct fw_ri_sge), 16);
return 0;
}
static void ring_kernel_db(struct c4iw_qp *qhp, u32 qid, u16 idx)
{
struct ibv_modify_qp cmd = {};
struct ibv_qp_attr attr;
int mask;
int __attribute__((unused)) ret;
/* FIXME: Why do we need this barrier if the kernel is going to
trigger the DMA? */
udma_to_device_barrier();
if (qid == qhp->wq.sq.qid) {
attr.sq_psn = idx;
mask = IBV_QP_SQ_PSN;
} else {
attr.rq_psn = idx;
mask = IBV_QP_RQ_PSN;
}
ret = ibv_cmd_modify_qp(&qhp->ibv_qp, &attr, mask, &cmd, sizeof cmd);
assert(!ret);
}
static void post_write_cmpl(struct c4iw_qp *qhp, struct ibv_send_wr *wr)
{
bool send_signaled = (wr->next->send_flags & IBV_SEND_SIGNALED) ||
qhp->sq_sig_all;
bool write_signaled = (wr->send_flags & IBV_SEND_SIGNALED) ||
qhp->sq_sig_all;
struct t4_swsqe *swsqe;
union t4_wr *wqe;
u16 write_wrid;
u8 len16;
u16 idx;
/*
* The sw_sq entries still look like a WRITE and a SEND and consume
* 2 slots. The FW WR, however, will be a single uber-WR.
*/
wqe = (union t4_wr *)((u8 *)qhp->wq.sq.queue +
qhp->wq.sq.wq_pidx * T4_EQ_ENTRY_SIZE);
build_rdma_write_cmpl(&qhp->wq.sq, &wqe->write_cmpl, wr, &len16);
/* WRITE swsqe */
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
swsqe->opcode = FW_RI_RDMA_WRITE;
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = write_signaled;
swsqe->flushed = 0;
swsqe->wr_id = wr->wr_id;
write_wrid = qhp->wq.sq.pidx;
/* just bump the sw_sq */
qhp->wq.sq.in_use++;
if (++qhp->wq.sq.pidx == qhp->wq.sq.size)
qhp->wq.sq.pidx = 0;
/* SEND swsqe */
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
if (wr->next->opcode == IBV_WR_SEND)
swsqe->opcode = FW_RI_SEND;
else
swsqe->opcode = FW_RI_SEND_WITH_INV;
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = send_signaled;
swsqe->flushed = 0;
swsqe->wr_id = wr->next->wr_id;
wqe->write_cmpl.flags_send = send_signaled ? FW_RI_COMPLETION_FLAG : 0;
wqe->write_cmpl.wrid_send = qhp->wq.sq.pidx;
init_wr_hdr(wqe, write_wrid, FW_RI_RDMA_WRITE_CMPL_WR,
write_signaled ? FW_RI_COMPLETION_FLAG : 0, len16);
t4_sq_produce(&qhp->wq, len16);
idx = DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
t4_ring_sq_db(&qhp->wq, idx, dev_is_t4(qhp->rhp),
len16, wqe);
}
int c4iw_post_send(struct ibv_qp *ibqp, struct ibv_send_wr *wr,
struct ibv_send_wr **bad_wr)
{
int err = 0;
u8 uninitialized_var(len16);
enum fw_wr_opcodes fw_opcode;
enum fw_ri_wr_flags fw_flags;
struct c4iw_qp *qhp;
union t4_wr *wqe, lwqe;
u32 num_wrs;
struct t4_swsqe *swsqe;
u16 idx = 0;
qhp = to_c4iw_qp(ibqp);
pthread_spin_lock(&qhp->lock);
if (t4_wq_in_error(&qhp->wq)) {
pthread_spin_unlock(&qhp->lock);
*bad_wr = wr;
return -EINVAL;
}
num_wrs = t4_sq_avail(&qhp->wq);
if (num_wrs == 0) {
pthread_spin_unlock(&qhp->lock);
*bad_wr = wr;
return -ENOMEM;
}
/*
* Fastpath for NVMe-oF target WRITE + SEND_WITH_INV wr chain which is
* the response for small NVMEe-oF READ requests. If the chain is
* exactly a WRITE->SEND_WITH_INV or a WRITE->SEND and the sgl depths
* and lengths meet the requirements of the fw_ri_write_cmpl_wr work
* request, then build and post the write_cmpl WR. If any of the tests
* below are not true, then we continue on with the tradtional WRITE
* and SEND WRs.
*/
if (qhp->rhp->write_cmpl_supported &&
qhp->rhp->chip_version >= CHELSIO_T5 &&
wr && wr->next && !wr->next->next &&
wr->opcode == IBV_WR_RDMA_WRITE && wr->sg_list[0].length &&
wr->num_sge <= T4_WRITE_CMPL_MAX_SGL &&
(wr->next->opcode == IBV_WR_SEND_WITH_INV ||
wr->next->opcode == IBV_WR_SEND) &&
wr->next->sg_list[0].length == T4_WRITE_CMPL_MAX_CQE &&
wr->next->num_sge == 1 && num_wrs >= 2) {
post_write_cmpl(qhp, wr);
pthread_spin_unlock(&qhp->lock);
return 0;
}
while (wr) {
if (num_wrs == 0) {
err = -ENOMEM;
*bad_wr = wr;
break;
}
wqe = &lwqe;
fw_flags = 0;
if (wr->send_flags & IBV_SEND_SOLICITED)
fw_flags |= FW_RI_SOLICITED_EVENT_FLAG;
if (wr->send_flags & IBV_SEND_SIGNALED || qhp->sq_sig_all)
fw_flags |= FW_RI_COMPLETION_FLAG;
swsqe = &qhp->wq.sq.sw_sq[qhp->wq.sq.pidx];
switch (wr->opcode) {
case IBV_WR_SEND_WITH_INV:
case IBV_WR_SEND:
INC_STAT(send);
if (wr->send_flags & IBV_SEND_FENCE)
fw_flags |= FW_RI_READ_FENCE_FLAG;
fw_opcode = FW_RI_SEND_WR;
if (wr->opcode == IBV_WR_SEND)
swsqe->opcode = FW_RI_SEND;
else
swsqe->opcode = FW_RI_SEND_WITH_INV;
err = build_rdma_send(&qhp->wq.sq, wqe, wr, &len16);
break;
case IBV_WR_RDMA_WRITE_WITH_IMM:
if (unlikely(!(qhp->wq.sq.flags & T4_SQ_WRITE_W_IMM))) {
err = -EINVAL;
break;
}
fw_flags |= FW_RI_RDMA_WRITE_WITH_IMMEDIATE;
/*FALLTHROUGH*/
case IBV_WR_RDMA_WRITE:
INC_STAT(write);
fw_opcode = FW_RI_RDMA_WRITE_WR;
swsqe->opcode = FW_RI_RDMA_WRITE;
err = build_rdma_write(&qhp->wq.sq, wqe, wr, &len16);
break;
case IBV_WR_RDMA_READ:
INC_STAT(read);
fw_opcode = FW_RI_RDMA_READ_WR;
swsqe->opcode = FW_RI_READ_REQ;
fw_flags = 0;
err = build_rdma_read(wqe, wr, &len16);
if (err)
break;
swsqe->read_len = wr->sg_list ? wr->sg_list[0].length :
0;
if (!qhp->wq.sq.oldest_read)
qhp->wq.sq.oldest_read = swsqe;
break;
default:
PDBG("%s post of type=%d TBD!\n", __func__,
wr->opcode);
err = -EINVAL;
}
if (err) {
*bad_wr = wr;
break;
}
swsqe->idx = qhp->wq.sq.pidx;
swsqe->complete = 0;
swsqe->signaled = (wr->send_flags & IBV_SEND_SIGNALED) ||
qhp->sq_sig_all;
swsqe->flushed = 0;
swsqe->wr_id = wr->wr_id;
init_wr_hdr(wqe, qhp->wq.sq.pidx, fw_opcode, fw_flags, len16);
PDBG("%s cookie 0x%llx pidx 0x%x opcode 0x%x\n",
__func__, (unsigned long long)wr->wr_id, qhp->wq.sq.pidx,
swsqe->opcode);
wr = wr->next;
num_wrs--;
copy_wr_to_sq(&qhp->wq, wqe, len16);
t4_sq_produce(&qhp->wq, len16);
idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
}
if (t4_wq_db_enabled(&qhp->wq)) {
t4_ring_sq_db(&qhp->wq, idx, dev_is_t4(qhp->rhp),
len16, wqe);
} else
ring_kernel_db(qhp, qhp->wq.sq.qid, idx);
/* This write is only for debugging, the value does not matter for DMA
*/
qhp->wq.sq.queue[qhp->wq.sq.size].status.host_wq_pidx = \
(qhp->wq.sq.wq_pidx);
pthread_spin_unlock(&qhp->lock);
return err;
}
static void defer_srq_wr(struct t4_srq *srq, union t4_recv_wr *wqe,
uint64_t wr_id, u8 len16)
{
struct t4_srq_pending_wr *pwr = &srq->pending_wrs[srq->pending_pidx];
PDBG("%s cidx %u pidx %u wq_pidx %u in_use %u ooo_count %u wr_id 0x%llx pending_cidx %u pending_pidx %u pending_in_use %u\n",
__func__, srq->cidx, srq->pidx, srq->wq_pidx,
srq->in_use, srq->ooo_count, (unsigned long long)wr_id,
srq->pending_cidx, srq->pending_pidx, srq->pending_in_use);
pwr->wr_id = wr_id;
pwr->len16 = len16;
memcpy(&pwr->wqe, wqe, len16*16);
t4_srq_produce_pending_wr(srq);
}
int c4iw_post_srq_recv(struct ibv_srq *ibsrq, struct ibv_recv_wr *wr,
struct ibv_recv_wr **bad_wr)
{
int err = 0;
struct c4iw_srq *srq;
union t4_recv_wr *wqe, lwqe;
u32 num_wrs;
u8 len16 = 0;
u16 idx = 0;
srq = to_c4iw_srq(ibsrq);
pthread_spin_lock(&srq->lock);
INC_STAT(srq_recv);
num_wrs = t4_srq_avail(&srq->wq);
if (num_wrs == 0) {
pthread_spin_unlock(&srq->lock);
return -ENOMEM;
}
while (wr) {
if (wr->num_sge > T4_MAX_RECV_SGE) {
err = -EINVAL;
*bad_wr = wr;
break;
}
wqe = &lwqe;
if (num_wrs)
err = build_srq_recv(wqe, wr, &len16);
else
err = -ENOMEM;
if (err) {
*bad_wr = wr;
break;
}
wqe->recv.opcode = FW_RI_RECV_WR;
wqe->recv.r1 = 0;
wqe->recv.wrid = srq->wq.pidx;
wqe->recv.r2[0] = 0;
wqe->recv.r2[1] = 0;
wqe->recv.r2[2] = 0;
wqe->recv.len16 = len16;
if (srq->wq.ooo_count || srq->wq.pending_in_use ||
srq->wq.sw_rq[srq->wq.pidx].valid)
defer_srq_wr(&srq->wq, wqe, wr->wr_id, len16);
else {
srq->wq.sw_rq[srq->wq.pidx].wr_id = wr->wr_id;
srq->wq.sw_rq[srq->wq.pidx].valid = 1;
c4iw_copy_wr_to_srq(&srq->wq, wqe, len16);
PDBG("%s cidx %u pidx %u wq_pidx %u in_use %u wr_id 0x%llx\n",
__func__, srq->wq.cidx, srq->wq.pidx,
srq->wq.wq_pidx, srq->wq.in_use,
(unsigned long long)wr->wr_id);
t4_srq_produce(&srq->wq, len16);
idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
}
wr = wr->next;
num_wrs--;
}
if (idx) {
t4_ring_srq_db(&srq->wq, idx, len16, wqe);
srq->wq.queue[srq->wq.size].status.host_wq_pidx =
srq->wq.wq_pidx;
}
pthread_spin_unlock(&srq->lock);
return err;
}
int c4iw_post_receive(struct ibv_qp *ibqp, struct ibv_recv_wr *wr,
struct ibv_recv_wr **bad_wr)
{
int err = 0;
struct c4iw_qp *qhp;
union t4_recv_wr *wqe, lwqe;
u32 num_wrs;
u8 len16 = 0;
u16 idx = 0;
qhp = to_c4iw_qp(ibqp);
pthread_spin_lock(&qhp->lock);
if (t4_wq_in_error(&qhp->wq)) {
pthread_spin_unlock(&qhp->lock);
*bad_wr = wr;
return -EINVAL;
}
INC_STAT(recv);
num_wrs = t4_rq_avail(&qhp->wq);
if (num_wrs == 0) {
pthread_spin_unlock(&qhp->lock);
*bad_wr = wr;
return -ENOMEM;
}
while (wr) {
if (wr->num_sge > T4_MAX_RECV_SGE) {
err = -EINVAL;
*bad_wr = wr;
break;
}
wqe = &lwqe;
if (num_wrs)
err = build_rdma_recv(&qhp->wq.rq, wqe, wr, &len16);
else
err = -ENOMEM;
if (err) {
*bad_wr = wr;
break;
}
qhp->wq.rq.sw_rq[qhp->wq.rq.pidx].wr_id = wr->wr_id;
wqe->recv.opcode = FW_RI_RECV_WR;
wqe->recv.r1 = 0;
wqe->recv.wrid = qhp->wq.rq.pidx;
wqe->recv.r2[0] = 0;
wqe->recv.r2[1] = 0;
wqe->recv.r2[2] = 0;
wqe->recv.len16 = len16;
PDBG("%s cookie 0x%llx pidx %u\n", __func__,
(unsigned long long) wr->wr_id, qhp->wq.rq.pidx);
copy_wr_to_rq(&qhp->wq, wqe, len16);
t4_rq_produce(&qhp->wq, len16);
idx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
wr = wr->next;
num_wrs--;
}
if (t4_wq_db_enabled(&qhp->wq))
t4_ring_rq_db(&qhp->wq, idx, dev_is_t4(qhp->rhp),
len16, wqe);
else
ring_kernel_db(qhp, qhp->wq.rq.qid, idx);
qhp->wq.rq.queue[qhp->wq.rq.size].status.host_wq_pidx = \
(qhp->wq.rq.wq_pidx);
pthread_spin_unlock(&qhp->lock);
return err;
}
void c4iw_flush_qp(struct c4iw_qp *qhp)
{
struct c4iw_cq *rchp, *schp;
u32 srqidx;
int count;
srqidx = t4_wq_srqidx(&qhp->wq);
rchp = to_c4iw_cq(qhp->ibv_qp.recv_cq);
schp = to_c4iw_cq(qhp->ibv_qp.send_cq);
PDBG("%s qhp %p rchp %p schp %p\n", __func__, qhp, rchp, schp);
/* locking heirarchy: cq lock first, then qp lock. */
pthread_spin_lock(&rchp->lock);
if (schp != rchp)
pthread_spin_lock(&schp->lock);
pthread_spin_lock(&qhp->lock);
if (qhp->wq.flushed) {
pthread_spin_unlock(&qhp->lock);
if (rchp != schp)
pthread_spin_unlock(&schp->lock);
pthread_spin_unlock(&rchp->lock);
return;
}
qhp->wq.flushed = 1;
t4_set_wq_in_error(&qhp->wq);
if (qhp->srq)
pthread_spin_lock(&qhp->srq->lock);
if (srqidx)
c4iw_flush_srqidx(qhp, srqidx);
qhp->ibv_qp.state = IBV_QPS_ERR;
c4iw_flush_hw_cq(rchp, qhp);
if (!qhp->srq) {
c4iw_count_rcqes(&rchp->cq, &qhp->wq, &count);
c4iw_flush_rq(&qhp->wq, &rchp->cq, count);
}
if (schp != rchp)
c4iw_flush_hw_cq(schp, qhp);
c4iw_flush_sq(qhp);
if (qhp->srq)
pthread_spin_unlock(&qhp->srq->lock);
pthread_spin_unlock(&qhp->lock);
if (schp != rchp)
pthread_spin_unlock(&schp->lock);
pthread_spin_unlock(&rchp->lock);
}
void c4iw_flush_qps(struct c4iw_dev *dev)
{
int i;
pthread_spin_lock(&dev->lock);
for (i=0; i < dev->max_qp; i++) {
struct c4iw_qp *qhp = dev->qpid2ptr[i];
if (qhp) {
if (!qhp->wq.flushed && t4_wq_in_error(&qhp->wq)) {
c4iw_flush_qp(qhp);
}
}
}
pthread_spin_unlock(&dev->lock);
}