blob: 42e37db4c1c3a6e1aa247abe49e755b6f4b4acee [file] [log] [blame]
/*
* Copyright (c) 2002-2022 Apple Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "mDNSEmbeddedAPI.h"
#include "DNSCommon.h"
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
#include <CommonCrypto/CommonHMAC.h>
#endif
#include "mdns_strict.h"
// Disable certain benign warnings with Microsoft compilers
#if (defined(_MSC_VER))
// Disable "conditional expression is constant" warning for debug macros.
// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
#pragma warning(disable:4127)
#endif
// ***************************************************************************
// MARK: - Byte Swapping Functions
mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
{
return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
}
mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
{
return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
}
// ***************************************************************************
// MARK: - MD5 Hash Functions
/* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
* The following changes have been made to the original sources:
* replaced CC_LONG w/ mDNSu32
* replaced CC_MD5* with MD5*
* replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
* removed extern decls for MD5_Init/Update/Final from CommonDigest.h
* removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
*
* Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
* to aid in platform-specific optimizations and debugging.
* Sources originally distributed under the following license headers:
* CommonDigest.h - APSL
*
* md32_Common.h
* ====================================================================
* Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* md5_dgst.c, md5_locl.h
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*
*/
//from CommonDigest.h
// from openssl/md5.h
#define MD5_CBLOCK 64
#define MD5_LBLOCK (MD5_CBLOCK/4)
//#define MD5_DIGEST_LENGTH 16
void MD5_Transform(MD5_CTX *c, const unsigned char *b);
// From md5_locl.h
#ifndef MD5_LONG_LOG2
#define MD5_LONG_LOG2 2 /* default to 32 bits */
#endif
#ifdef MD5_ASM
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
# define md5_block_host_order md5_block_asm_host_order
# elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
# define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
# endif
#endif
void md5_block_host_order (MD5_CTX *c, const void *p,int num);
void md5_block_data_order (MD5_CTX *c, const void *p,int num);
#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
/*
* *_block_host_order is expected to handle aligned data while
* *_block_data_order - unaligned. As algorithm and host (x86)
* are in this case of the same "endianness" these two are
* otherwise indistinguishable. But normally you don't want to
* call the same function because unaligned access in places
* where alignment is expected is usually a "Bad Thing". Indeed,
* on RISCs you get punished with BUS ERROR signal or *severe*
* performance degradation. Intel CPUs are in turn perfectly
* capable of loading unaligned data without such drastic side
* effect. Yes, they say it's slower than aligned load, but no
* exception is generated and therefore performance degradation
* is *incomparable* with RISCs. What we should weight here is
* costs of unaligned access against costs of aligning data.
* According to my measurements allowing unaligned access results
* in ~9% performance improvement on Pentium II operating at
* 266MHz. I won't be surprised if the difference will be higher
* on faster systems:-)
*
* <appro@fy.chalmers.se>
*/
#define md5_block_data_order md5_block_host_order
#endif
#define DATA_ORDER_IS_LITTLE_ENDIAN
#define HASH_LONG mDNSu32
#define HASH_LONG_LOG2 MD5_LONG_LOG2
#define HASH_CTX MD5_CTX
#define HASH_CBLOCK MD5_CBLOCK
#define HASH_LBLOCK MD5_LBLOCK
#define HASH_UPDATE MD5_Update
#define HASH_TRANSFORM MD5_Transform
#define HASH_FINAL MD5_Final
#define HASH_MAKE_STRING(c,s) do { \
unsigned long ll; \
ll=(c)->A; HOST_l2c(ll,(s)); \
ll=(c)->B; HOST_l2c(ll,(s)); \
ll=(c)->C; HOST_l2c(ll,(s)); \
ll=(c)->D; HOST_l2c(ll,(s)); \
} while (0)
#define HASH_BLOCK_HOST_ORDER md5_block_host_order
#if !defined(L_ENDIAN) || defined(md5_block_data_order)
#define HASH_BLOCK_DATA_ORDER md5_block_data_order
/*
* Little-endians (Intel and Alpha) feel better without this.
* It looks like memcpy does better job than generic
* md5_block_data_order on copying-n-aligning input data.
* But frankly speaking I didn't expect such result on Alpha.
* On the other hand I've got this with egcs-1.0.2 and if
* program is compiled with another (better?) compiler it
* might turn out other way around.
*
* <appro@fy.chalmers.se>
*/
#endif
// from md32_common.h
/*
* This is a generic 32 bit "collector" for message digest algorithms.
* Whenever needed it collects input character stream into chunks of
* 32 bit values and invokes a block function that performs actual hash
* calculations.
*
* Porting guide.
*
* Obligatory macros:
*
* DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
* this macro defines byte order of input stream.
* HASH_CBLOCK
* size of a unit chunk HASH_BLOCK operates on.
* HASH_LONG
* has to be at lest 32 bit wide, if it's wider, then
* HASH_LONG_LOG2 *has to* be defined along
* HASH_CTX
* context structure that at least contains following
* members:
* typedef struct {
* ...
* HASH_LONG Nl,Nh;
* HASH_LONG data[HASH_LBLOCK];
* int num;
* ...
* } HASH_CTX;
* HASH_UPDATE
* name of "Update" function, implemented here.
* HASH_TRANSFORM
* name of "Transform" function, implemented here.
* HASH_FINAL
* name of "Final" function, implemented here.
* HASH_BLOCK_HOST_ORDER
* name of "block" function treating *aligned* input message
* in host byte order, implemented externally.
* HASH_BLOCK_DATA_ORDER
* name of "block" function treating *unaligned* input message
* in original (data) byte order, implemented externally (it
* actually is optional if data and host are of the same
* "endianess").
* HASH_MAKE_STRING
* macro convering context variables to an ASCII hash string.
*
* Optional macros:
*
* B_ENDIAN or L_ENDIAN
* defines host byte-order.
* HASH_LONG_LOG2
* defaults to 2 if not states otherwise.
* HASH_LBLOCK
* assumed to be HASH_CBLOCK/4 if not stated otherwise.
* HASH_BLOCK_DATA_ORDER_ALIGNED
* alternative "block" function capable of treating
* aligned input message in original (data) order,
* implemented externally.
*
* MD5 example:
*
* #define DATA_ORDER_IS_LITTLE_ENDIAN
*
* #define HASH_LONG mDNSu32
* #define HASH_LONG_LOG2 mDNSu32_LOG2
* #define HASH_CTX MD5_CTX
* #define HASH_CBLOCK MD5_CBLOCK
* #define HASH_LBLOCK MD5_LBLOCK
* #define HASH_UPDATE MD5_Update
* #define HASH_TRANSFORM MD5_Transform
* #define HASH_FINAL MD5_Final
* #define HASH_BLOCK_HOST_ORDER md5_block_host_order
* #define HASH_BLOCK_DATA_ORDER md5_block_data_order
*
* <appro@fy.chalmers.se>
*/
#if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
#error "DATA_ORDER must be defined!"
#endif
#ifndef HASH_CBLOCK
#error "HASH_CBLOCK must be defined!"
#endif
#ifndef HASH_LONG
#error "HASH_LONG must be defined!"
#endif
#ifndef HASH_CTX
#error "HASH_CTX must be defined!"
#endif
#ifndef HASH_UPDATE
#error "HASH_UPDATE must be defined!"
#endif
#ifndef HASH_TRANSFORM
#error "HASH_TRANSFORM must be defined!"
#endif
#ifndef HASH_FINAL
#error "HASH_FINAL must be defined!"
#endif
#ifndef HASH_BLOCK_HOST_ORDER
#error "HASH_BLOCK_HOST_ORDER must be defined!"
#endif
#if 0
/*
* Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
* isn't defined.
*/
#ifndef HASH_BLOCK_DATA_ORDER
#error "HASH_BLOCK_DATA_ORDER must be defined!"
#endif
#endif
#ifndef HASH_LBLOCK
#define HASH_LBLOCK (HASH_CBLOCK/4)
#endif
#ifndef HASH_LONG_LOG2
#define HASH_LONG_LOG2 2
#endif
/*
* Engage compiler specific rotate intrinsic function if available.
*/
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-macros"
#endif
#undef ROTATE
#ifndef PEDANTIC
# if 0 /* defined(_MSC_VER) */
# define ROTATE(a,n) _lrotl(a,n)
# elif defined(__MWERKS__)
# if defined(__POWERPC__)
# define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
# elif defined(__MC68K__)
/* Motorola specific tweak. <appro@fy.chalmers.se> */
# define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n))
# else
# define ROTATE(a,n) __rol(a,n)
# endif
# elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
/*
* Some GNU C inline assembler templates. Note that these are
* rotates by *constant* number of bits! But that's exactly
* what we need here...
*
* <appro@fy.chalmers.se>
*/
/*
* LLVM is more strict about compatibility of types between input & output constraints,
* but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
* most significant bytes by casting to an unsigned int.
*/
# if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
# define ROTATE(a,n) ({ register unsigned int ret; \
asm ( \
"roll %1,%0" \
: "=r" (ret) \
: "I" (n), "0" ((unsigned int)a) \
: "cc"); \
ret; \
})
# elif defined(__powerpc) || defined(__ppc)
# define ROTATE(a,n) ({ register unsigned int ret; \
asm ( \
"rlwinm %0,%1,%2,0,31" \
: "=r" (ret) \
: "r" (a), "I" (n)); \
ret; \
})
# endif
# endif
/*
* Engage compiler specific "fetch in reverse byte order"
* intrinsic function if available.
*/
# if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
/* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
# if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
# define BE_FETCH32(a) ({ register unsigned int l=(a); \
asm ( \
"bswapl %0" \
: "=r" (l) : "0" (l)); \
l; \
})
# elif defined(__powerpc)
# define LE_FETCH32(a) ({ register unsigned int l; \
asm ( \
"lwbrx %0,0,%1" \
: "=r" (l) \
: "r" (a)); \
l; \
})
# elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
# define LE_FETCH32(a) ({ register unsigned int l; \
asm ( \
"lda [%1]#ASI_PRIMARY_LITTLE,%0" \
: "=r" (l) \
: "r" (a)); \
l; \
})
# endif
# endif
#endif /* PEDANTIC */
#if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */
/* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
#ifdef ROTATE
/* 5 instructions with rotate instruction, else 9 */
#define REVERSE_FETCH32(a,l) ( \
l=*(const HASH_LONG *)(a), \
((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \
)
#else
/* 6 instructions with rotate instruction, else 8 */
#define REVERSE_FETCH32(a,l) ( \
l=*(const HASH_LONG *)(a), \
l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \
ROTATE(l,16) \
)
/*
* Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
* It's rewritten as above for two reasons:
* - RISCs aren't good at long constants and have to explicitely
* compose 'em with several (well, usually 2) instructions in a
* register before performing the actual operation and (as you
* already realized:-) having same constant should inspire the
* compiler to permanently allocate the only register for it;
* - most modern CPUs have two ALUs, but usually only one has
* circuitry for shifts:-( this minor tweak inspires compiler
* to schedule shift instructions in a better way...
*
* <appro@fy.chalmers.se>
*/
#endif
#endif
#ifndef ROTATE
#define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
#endif
/*
* Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
* and HASH_BLOCK_HOST_ORDER ought to be the same if input data
* and host are of the same "endianess". It's possible to mask
* this with blank #define HASH_BLOCK_DATA_ORDER though...
*
* <appro@fy.chalmers.se>
*/
#if defined(B_ENDIAN)
# if defined(DATA_ORDER_IS_BIG_ENDIAN)
# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
# endif
# elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
# ifndef HOST_FETCH32
# ifdef LE_FETCH32
# define HOST_FETCH32(p,l) LE_FETCH32(p)
# elif defined(REVERSE_FETCH32)
# define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
# endif
# endif
# endif
#elif defined(L_ENDIAN)
# if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
# if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
# define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
# endif
# elif defined(DATA_ORDER_IS_BIG_ENDIAN)
# ifndef HOST_FETCH32
# ifdef BE_FETCH32
# define HOST_FETCH32(p,l) BE_FETCH32(p)
# elif defined(REVERSE_FETCH32)
# define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
# endif
# endif
# endif
#endif
#if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
#ifndef HASH_BLOCK_DATA_ORDER
#error "HASH_BLOCK_DATA_ORDER must be defined!"
#endif
#endif
// None of the invocations of the following macros actually use the result,
// so cast them to void to avoid any compiler warnings/errors about not using
// the result (e.g. when using clang).
// If the resultant values need to be used at some point, these must be changed.
#define HOST_c2l(c,l) ((void)_HOST_c2l(c,l))
#define HOST_l2c(l,c) ((void)_HOST_l2c(l,c))
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
#define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
l|=(((unsigned long)(*((c)++)))<<16), \
l|=(((unsigned long)(*((c)++)))<< 8), \
l|=(((unsigned long)(*((c)++))) ), \
l)
#define HOST_p_c2l(c,l,n) { \
switch (n) { \
case 0: l =((unsigned long)(*((c)++)))<<24; \
fallthrough(); \
case 1: l|=((unsigned long)(*((c)++)))<<16; \
fallthrough(); \
case 2: l|=((unsigned long)(*((c)++)))<< 8; \
fallthrough(); \
case 3: l|=((unsigned long)(*((c)++))); \
} }
#define HOST_p_c2l_p(c,l,sc,len) { \
switch (sc) { \
case 0: l =((unsigned long)(*((c)++)))<<24; \
if (--len == 0) break; \
fallthrough(); \
case 1: l|=((unsigned long)(*((c)++)))<<16; \
if (--len == 0) break; \
fallthrough(); \
case 2: l|=((unsigned long)(*((c)++)))<< 8; \
} }
/* NOTE the pointer is not incremented at the end of this */
#define HOST_c2l_p(c,l,n) { \
l=0; (c)+=n; \
switch (n) { \
case 3: l =((unsigned long)(*(--(c))))<< 8; \
fallthrough(); \
case 2: l|=((unsigned long)(*(--(c))))<<16; \
fallthrough(); \
case 1: l|=((unsigned long)(*(--(c))))<<24; \
} }
#define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
*((c)++)=(unsigned char)(((l) )&0xff), \
l)
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
#define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \
l|=(((unsigned long)(*((c)++)))<< 8), \
l|=(((unsigned long)(*((c)++)))<<16), \
l|=(((unsigned long)(*((c)++)))<<24), \
l)
#define HOST_p_c2l(c,l,n) { \
switch (n) { \
case 0: l =((unsigned long)(*((c)++))); \
fallthrough(); \
case 1: l|=((unsigned long)(*((c)++)))<< 8; \
fallthrough(); \
case 2: l|=((unsigned long)(*((c)++)))<<16; \
fallthrough(); \
case 3: l|=((unsigned long)(*((c)++)))<<24; \
} }
#define HOST_p_c2l_p(c,l,sc,len) { \
switch (sc) { \
case 0: l =((unsigned long)(*((c)++))); \
if (--len == 0) break; \
fallthrough(); \
case 1: l|=((unsigned long)(*((c)++)))<< 8; \
if (--len == 0) break; \
fallthrough(); \
case 2: l|=((unsigned long)(*((c)++)))<<16; \
} }
/* NOTE the pointer is not incremented at the end of this */
#define HOST_c2l_p(c,l,n) { \
l=0; (c)+=n; \
switch (n) { \
case 3: l =((unsigned long)(*(--(c))))<<16; \
fallthrough(); \
case 2: l|=((unsigned long)(*(--(c))))<< 8; \
fallthrough(); \
case 1: l|=((unsigned long)(*(--(c)))); \
} }
#define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>>24)&0xff), \
l)
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
/*
* Time for some action:-)
*/
int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
{
const unsigned char *data=(const unsigned char *)data_;
const unsigned char * const data_end=(const unsigned char *)data_ + len;
register HASH_LONG * p;
register unsigned long l;
int sw,sc,ew,ec;
if (len==0) return 1;
l=(c->Nl+(len<<3))&0xffffffffL;
/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
* Wei Dai <weidai@eskimo.com> for pointing it out. */
if (l < c->Nl) /* overflow */
c->Nh++;
c->Nh+=(len>>29);
c->Nl=l;
if (c->num != 0)
{
p=c->data;
sw=c->num>>2;
sc=c->num&0x03;
if ((c->num+len) >= HASH_CBLOCK)
{
l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
for (; (sw < HASH_LBLOCK) && ((data_end - data) >= 4); sw++)
{
HOST_c2l(data,l); p[sw]=l;
}
HASH_BLOCK_HOST_ORDER (c,p,1);
len-=(HASH_CBLOCK-c->num);
c->num=0;
/* drop through and do the rest */
}
else
{
c->num+=len;
if ((sc+len) < 4) /* ugly, add char's to a word */
{
l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
}
else
{
ew=(c->num>>2);
ec=(c->num&0x03);
if (sc)
l=p[sw];
HOST_p_c2l(data,l,sc);
p[sw++]=l;
for (; (sw < ew) && ((data_end - data) >= 4); sw++)
{
HOST_c2l(data,l); p[sw]=l;
}
if (ec)
{
HOST_c2l_p(data,l,ec); p[sw]=l;
}
}
return 1;
}
}
sw=(int)(len/HASH_CBLOCK);
if (sw > 0)
{
#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
/*
* Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
* only if sizeof(HASH_LONG)==4.
*/
if ((((unsigned long)data)%4) == 0)
{
/* data is properly aligned so that we can cast it: */
HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
sw*=HASH_CBLOCK;
data+=sw;
len-=sw;
}
else
#if !defined(HASH_BLOCK_DATA_ORDER)
while (sw--)
{
mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
data+=HASH_CBLOCK;
len-=HASH_CBLOCK;
}
#endif
#endif
#if defined(HASH_BLOCK_DATA_ORDER)
{
HASH_BLOCK_DATA_ORDER(c,data,sw);
sw*=HASH_CBLOCK;
data+=sw;
len-=sw;
}
#endif
}
if (len!=0)
{
p = c->data;
c->num = (int)len;
ew=(int)(len>>2); /* words to copy */
ec=(int)(len&0x03);
for (; ew && ((data_end - data) >= 4); ew--,p++)
{
HOST_c2l(data,l); *p=l;
}
HOST_c2l_p(data,l,ec);
*p=l;
}
return 1;
}
void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
{
#if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
if ((((unsigned long)data)%4) == 0)
/* data is properly aligned so that we can cast it: */
HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
else
#if !defined(HASH_BLOCK_DATA_ORDER)
{
mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
}
#endif
#endif
#if defined(HASH_BLOCK_DATA_ORDER)
HASH_BLOCK_DATA_ORDER (c,data,1);
#endif
}
int HASH_FINAL (unsigned char *md, HASH_CTX *c)
{
register HASH_LONG *p;
register unsigned long l;
register int i,j;
static const unsigned char end[4]={0x80,0x00,0x00,0x00};
const unsigned char *cp=end;
/* c->num should definitly have room for at least one more byte. */
p=c->data;
i=c->num>>2;
j=c->num&0x03;
#if 0
/* purify often complains about the following line as an
* Uninitialized Memory Read. While this can be true, the
* following p_c2l macro will reset l when that case is true.
* This is because j&0x03 contains the number of 'valid' bytes
* already in p[i]. If and only if j&0x03 == 0, the UMR will
* occur but this is also the only time p_c2l will do
* l= *(cp++) instead of l|= *(cp++)
* Many thanks to Alex Tang <altitude@cic.net> for pickup this
* 'potential bug' */
#ifdef PURIFY
if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
#endif
l=p[i];
#else
l = (j==0) ? 0 : p[i];
#endif
HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
{
if (i<HASH_LBLOCK) p[i]=0;
HASH_BLOCK_HOST_ORDER (c,p,1);
i=0;
}
for (; i<(HASH_LBLOCK-2); i++)
p[i]=0;
#if defined(DATA_ORDER_IS_BIG_ENDIAN)
p[HASH_LBLOCK-2]=c->Nh;
p[HASH_LBLOCK-1]=c->Nl;
#elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
p[HASH_LBLOCK-2]=c->Nl;
p[HASH_LBLOCK-1]=c->Nh;
#endif
HASH_BLOCK_HOST_ORDER (c,p,1);
#ifndef HASH_MAKE_STRING
#error "HASH_MAKE_STRING must be defined!"
#else
HASH_MAKE_STRING(c,md);
#endif
c->num=0;
/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
* but I'm not worried :-)
OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
*/
return 1;
}
#ifndef MD32_REG_T
#define MD32_REG_T long
/*
* This comment was originaly written for MD5, which is why it
* discusses A-D. But it basically applies to all 32-bit digests,
* which is why it was moved to common header file.
*
* In case you wonder why A-D are declared as long and not
* as mDNSu32. Doing so results in slight performance
* boost on LP64 architectures. The catch is we don't
* really care if 32 MSBs of a 64-bit register get polluted
* with eventual overflows as we *save* only 32 LSBs in
* *either* case. Now declaring 'em long excuses the compiler
* from keeping 32 MSBs zeroed resulting in 13% performance
* improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
* Well, to be honest it should say that this *prevents*
* performance degradation.
* <appro@fy.chalmers.se>
* Apparently there're LP64 compilers that generate better
* code if A-D are declared int. Most notably GCC-x86_64
* generates better code.
* <appro@fy.chalmers.se>
*/
#endif
// from md5_locl.h (continued)
/*
#define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
#define G(x,y,z) (((x) & (z)) | ((y) & (~(z))))
*/
/* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
* simplified to the code below. Wei attributes these optimizations
* to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
*/
#define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
#define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c))
#define H(b,c,d) ((b) ^ (c) ^ (d))
#define I(b,c,d) (((~(d)) | (b)) ^ (c))
#define R0(a,b,c,d,k,s,t) { \
a+=((k)+(t)+F((b),(c),(d))); \
a=ROTATE(a,s); \
a+=b; }; \
#define R1(a,b,c,d,k,s,t) { \
a+=((k)+(t)+G((b),(c),(d))); \
a=ROTATE(a,s); \
a+=b; };
#define R2(a,b,c,d,k,s,t) { \
a+=((k)+(t)+H((b),(c),(d))); \
a=ROTATE(a,s); \
a+=b; };
#define R3(a,b,c,d,k,s,t) { \
a+=((k)+(t)+I((b),(c),(d))); \
a=ROTATE(a,s); \
a+=b; };
// from md5_dgst.c
/* Implemented from RFC1321 The MD5 Message-Digest Algorithm
*/
#define INIT_DATA_A (unsigned long)0x67452301L
#define INIT_DATA_B (unsigned long)0xefcdab89L
#define INIT_DATA_C (unsigned long)0x98badcfeL
#define INIT_DATA_D (unsigned long)0x10325476L
int MD5_Init(MD5_CTX *c)
{
c->A=INIT_DATA_A;
c->B=INIT_DATA_B;
c->C=INIT_DATA_C;
c->D=INIT_DATA_D;
c->Nl=0;
c->Nh=0;
c->num=0;
return 1;
}
#ifndef md5_block_host_order
void md5_block_host_order (MD5_CTX *c, const void *data, int num)
{
const mDNSu32 *X=(const mDNSu32 *)data;
register unsigned MD32_REG_T A,B,C,D;
A=c->A;
B=c->B;
C=c->C;
D=c->D;
for (; num--; X+=HASH_LBLOCK)
{
/* Round 0 */
#if defined(__GNUC__)
#pragma GCC diagnostic push
#endif
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wgnu-statement-expression"
#endif
R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
R0(C,D,A,B,X[ 2],17,0x242070dbL);
R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
R0(D,A,B,C,X[ 5],12,0x4787c62aL);
R0(C,D,A,B,X[ 6],17,0xa8304613L);
R0(B,C,D,A,X[ 7],22,0xfd469501L);
R0(A,B,C,D,X[ 8], 7,0x698098d8L);
R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
R0(C,D,A,B,X[10],17,0xffff5bb1L);
R0(B,C,D,A,X[11],22,0x895cd7beL);
R0(A,B,C,D,X[12], 7,0x6b901122L);
R0(D,A,B,C,X[13],12,0xfd987193L);
R0(C,D,A,B,X[14],17,0xa679438eL);
R0(B,C,D,A,X[15],22,0x49b40821L);
/* Round 1 */
R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
R1(D,A,B,C,X[ 6], 9,0xc040b340L);
R1(C,D,A,B,X[11],14,0x265e5a51L);
R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
R1(D,A,B,C,X[10], 9,0x02441453L);
R1(C,D,A,B,X[15],14,0xd8a1e681L);
R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
R1(D,A,B,C,X[14], 9,0xc33707d6L);
R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
R1(B,C,D,A,X[ 8],20,0x455a14edL);
R1(A,B,C,D,X[13], 5,0xa9e3e905L);
R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
R1(C,D,A,B,X[ 7],14,0x676f02d9L);
R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
/* Round 2 */
R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
R2(D,A,B,C,X[ 8],11,0x8771f681L);
R2(C,D,A,B,X[11],16,0x6d9d6122L);
R2(B,C,D,A,X[14],23,0xfde5380cL);
R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
R2(B,C,D,A,X[10],23,0xbebfbc70L);
R2(A,B,C,D,X[13], 4,0x289b7ec6L);
R2(D,A,B,C,X[ 0],11,0xeaa127faL);
R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
R2(B,C,D,A,X[ 6],23,0x04881d05L);
R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
R2(D,A,B,C,X[12],11,0xe6db99e5L);
R2(C,D,A,B,X[15],16,0x1fa27cf8L);
R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
/* Round 3 */
R3(A,B,C,D,X[ 0], 6,0xf4292244L);
R3(D,A,B,C,X[ 7],10,0x432aff97L);
R3(C,D,A,B,X[14],15,0xab9423a7L);
R3(B,C,D,A,X[ 5],21,0xfc93a039L);
R3(A,B,C,D,X[12], 6,0x655b59c3L);
R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
R3(C,D,A,B,X[10],15,0xffeff47dL);
R3(B,C,D,A,X[ 1],21,0x85845dd1L);
R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
R3(C,D,A,B,X[ 6],15,0xa3014314L);
R3(B,C,D,A,X[13],21,0x4e0811a1L);
R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
R3(D,A,B,C,X[11],10,0xbd3af235L);
R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
R3(B,C,D,A,X[ 9],21,0xeb86d391L);
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
A = c->A += A;
B = c->B += B;
C = c->C += C;
D = c->D += D;
}
}
#endif
#ifndef md5_block_data_order
#ifdef X
#undef X
#endif
void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
{
const unsigned char *data=data_;
register unsigned MD32_REG_T A,B,C,D,l;
#ifndef MD32_XARRAY
/* See comment in crypto/sha/sha_locl.h for details. */
unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
# define X(i) XX ## i
#else
mDNSu32 XX[MD5_LBLOCK];
# define X(i) XX[i]
#endif
A=c->A;
B=c->B;
C=c->C;
D=c->D;
#if defined(__clang_analyzer__)
// Get rid of false positive analyzer warning.
for (const unsigned char *_ptr = data; _ptr < &data[num * HASH_CBLOCK]; ++_ptr) {}
#endif
for (; num--;)
{
HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
/* Round 0 */
#if defined(__GNUC__)
#pragma GCC diagnostic push
#endif
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wgnu-statement-expression"
#endif
R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l;
R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l;
R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l;
R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l;
R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l;
R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l;
R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l;
R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l;
R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l;
R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l;
R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l;
R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l;
R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l;
R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l;
R0(C,D,A,B,X(14),17,0xa679438eL);
R0(B,C,D,A,X(15),22,0x49b40821L);
/* Round 1 */
R1(A,B,C,D,X( 1), 5,0xf61e2562L);
R1(D,A,B,C,X( 6), 9,0xc040b340L);
R1(C,D,A,B,X(11),14,0x265e5a51L);
R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
R1(A,B,C,D,X( 5), 5,0xd62f105dL);
R1(D,A,B,C,X(10), 9,0x02441453L);
R1(C,D,A,B,X(15),14,0xd8a1e681L);
R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
R1(D,A,B,C,X(14), 9,0xc33707d6L);
R1(C,D,A,B,X( 3),14,0xf4d50d87L);
R1(B,C,D,A,X( 8),20,0x455a14edL);
R1(A,B,C,D,X(13), 5,0xa9e3e905L);
R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
R1(C,D,A,B,X( 7),14,0x676f02d9L);
R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
/* Round 2 */
R2(A,B,C,D,X( 5), 4,0xfffa3942L);
R2(D,A,B,C,X( 8),11,0x8771f681L);
R2(C,D,A,B,X(11),16,0x6d9d6122L);
R2(B,C,D,A,X(14),23,0xfde5380cL);
R2(A,B,C,D,X( 1), 4,0xa4beea44L);
R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
R2(B,C,D,A,X(10),23,0xbebfbc70L);
R2(A,B,C,D,X(13), 4,0x289b7ec6L);
R2(D,A,B,C,X( 0),11,0xeaa127faL);
R2(C,D,A,B,X( 3),16,0xd4ef3085L);
R2(B,C,D,A,X( 6),23,0x04881d05L);
R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
R2(D,A,B,C,X(12),11,0xe6db99e5L);
R2(C,D,A,B,X(15),16,0x1fa27cf8L);
R2(B,C,D,A,X( 2),23,0xc4ac5665L);
/* Round 3 */
R3(A,B,C,D,X( 0), 6,0xf4292244L);
R3(D,A,B,C,X( 7),10,0x432aff97L);
R3(C,D,A,B,X(14),15,0xab9423a7L);
R3(B,C,D,A,X( 5),21,0xfc93a039L);
R3(A,B,C,D,X(12), 6,0x655b59c3L);
R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
R3(C,D,A,B,X(10),15,0xffeff47dL);
R3(B,C,D,A,X( 1),21,0x85845dd1L);
R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
R3(C,D,A,B,X( 6),15,0xa3014314L);
R3(B,C,D,A,X(13),21,0x4e0811a1L);
R3(A,B,C,D,X( 4), 6,0xf7537e82L);
R3(D,A,B,C,X(11),10,0xbd3af235L);
R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
R3(B,C,D,A,X( 9),21,0xeb86d391L);
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
A = c->A += A;
B = c->B += B;
C = c->C += C;
D = c->D += D;
}
}
#endif
// ***************************************************************************
// MARK: - base64 -> binary conversion
static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const char Pad64 = '=';
#define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
mDNSlocal const char *mDNSstrchr(const char *s, int c)
{
while (1)
{
if (c == *s) return s;
if (!*s) return mDNSNULL;
s++;
}
}
// skips all whitespace anywhere.
// converts characters, four at a time, starting at (or after)
// src from base - 64 numbers into three 8 bit bytes in the target area.
// it returns the number of data bytes stored at the target, or -1 on error.
// adapted from BIND sources
mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
{
int tarindex, state, ch;
const char *pos;
state = 0;
tarindex = 0;
while ((ch = *src++) != '\0') {
if (mDNSisspace(ch)) /* Skip whitespace anywhere. */
continue;
if (ch == Pad64)
break;
pos = mDNSstrchr(Base64, ch);
if (pos == 0) /* A non-base64 character. */
return (-1);
switch (state) {
case 0:
if (target) {
if ((mDNSu32)tarindex >= targsize)
return (-1);
target[tarindex] = (mDNSu8)((pos - Base64) << 2);
}
state = 1;
break;
case 1:
if (target) {
if ((mDNSu32)tarindex + 1 >= targsize)
return (-1);
target[tarindex] |= (pos - Base64) >> 4;
target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
}
tarindex++;
state = 2;
break;
case 2:
if (target) {
if ((mDNSu32)tarindex + 1 >= targsize)
return (-1);
target[tarindex] |= (pos - Base64) >> 2;
target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6);
}
tarindex++;
state = 3;
break;
case 3:
if (target) {
if ((mDNSu32)tarindex >= targsize)
return (-1);
target[tarindex] |= (pos - Base64);
}
tarindex++;
state = 0;
break;
default:
return -1;
}
}
/*
* We are done decoding Base-64 chars. Let's see if we ended
* on a byte boundary, and/or with erroneous trailing characters.
*/
if (ch == Pad64) { /* We got a pad char. */
ch = *src++; /* Skip it, get next. */
switch (state) {
case 0: /* Invalid = in first position */
case 1: /* Invalid = in second position */
return (-1);
case 2: /* Valid, means one byte of info */
/* Skip any number of spaces. */
for ((void)mDNSNULL; ch != '\0'; ch = *src++)
if (!mDNSisspace(ch))
break;
/* Make sure there is another trailing = sign. */
if (ch != Pad64)
return (-1);
ch = *src++; /* Skip the = */
/* Fall through to "single trailing =" case. */
/* FALLTHROUGH */
case 3: /* Valid, means two bytes of info */
/*
* We know this char is an =. Is there anything but
* whitespace after it?
*/
for ((void)mDNSNULL; ch != '\0'; ch = *src++)
if (!mDNSisspace(ch))
return (-1);
/*
* Now make sure for cases 2 and 3 that the "extra"
* bits that slopped past the last full byte were
* zeros. If we don't check them, they become a
* subliminal channel.
*/
if (target && target[tarindex] != 0)
return (-1);
}
} else {
/*
* We ended by seeing the end of the string. Make sure we
* have no partial bytes lying around.
*/
if (state != 0)
return (-1);
}
return (tarindex);
}
// ***************************************************************************
// MARK: - API exported to mDNS Core
// TSIG HMAC names from <https://datatracker.ietf.org/doc/html/rfc8945#section-6>
// Currently, we do not support the truncated algorithms listed by the link above.
#define kHMAC_MD5_AlgName ((const domainname *)"\x8" "hmac-md5" "\x7" "sig-alg" "\x3" "reg" "\x3" "int")
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
#define kHMAC_None_AlgName ((const domainname *)"\xC" "hmac-invalid")
#define kHMAC_SHA1_AlgName ((const domainname *)"\x9" "hmac-sha1")
#define kHMAC_SHA224_AlgName ((const domainname *)"\xB" "hmac-sha224")
#define kHMAC_SHA256_AlgName ((const domainname *)"\xB" "hmac-sha256")
#define kHMAC_SHA384_AlgName ((const domainname *)"\xB" "hmac-sha384")
#define kHMAC_SHA512_AlgName ((const domainname *)"\xB" "hmac-sha512")
// Since each HMAC algorithm has the most secure key length, we use the key length to determine which HMAC algorithm
// should be used.
mDNSlocal DNSDigest_HMACAlgorithm DNSDigest_GetHMACAlgorithmFromKeyLengthInBytes(const mDNSu32 length)
{
switch (length) {
case kDNSDigest_HMACMD5_KeyLengthInBytes:
return kDNSDigest_HMACAlg_MD5;
case kDNSDigest_HMACSHA1_KeyLengthInBytes:
return kDNSDigest_HMACAlg_SHA1;
case kDNSDigest_HMACSHA224_KeyLengthInBytes:
return kDNSDigest_HMACAlg_SHA224;
case kDNSDigest_HMACSHA256_KeyLengthInBytes:
return kDNSDigest_HMACAlg_SHA256;
case kDNSDigest_HMACSHA384_KeyLengthInBytes:
return kDNSDigest_HMACAlg_SHA384;
case kDNSDigest_HMACSHA512_KeyLengthInBytes:
return kDNSDigest_HMACAlg_SHA512;
default:
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_ERROR, "Invalid HMAC key length, unable to get algorithm type"
" - key length: %u", length);
return kDNSDigest_HMACAlg_None;
}
}
// Convert DNSDigest_HMACAlgorithm to CCHmacAlgorithm that is used by CoreCrypto.
mDNSlocal CCHmacAlgorithm DNSDigest_GetCCHmacAlgorithm(const DNSDigest_HMACAlgorithm algorithm)
{
switch (algorithm) {
case kDNSDigest_HMACAlg_None:
return kCCHmacAlgSHA512;
case kDNSDigest_HMACAlg_MD5:
return kCCHmacAlgMD5;
case kDNSDigest_HMACAlg_SHA1:
return kCCHmacAlgSHA1;
case kDNSDigest_HMACAlg_SHA224:
return kCCHmacAlgSHA224;
case kDNSDigest_HMACAlg_SHA256:
return kCCHmacAlgSHA256;
case kDNSDigest_HMACAlg_SHA384:
return kCCHmacAlgSHA384;
case kDNSDigest_HMACAlg_SHA512:
return kCCHmacAlgSHA512;
}
}
// Get the signature output length of each algorithm.
mDNSlocal mDNSu16 DNSDigest_GetHMACOutputLength(const DNSDigest_HMACAlgorithm algorithm)
{
switch (algorithm) {
case kDNSDigest_HMACAlg_None:
return 0;
case kDNSDigest_HMACAlg_MD5:
return kDNSDigest_HMACMD5_OutputLengthInBytes;
case kDNSDigest_HMACAlg_SHA1:
return kDNSDigest_HMACSHA1_OutputLengthInBytes;
case kDNSDigest_HMACAlg_SHA224:
return kDNSDigest_HMACSHA224_OutputLengthInBytes;
case kDNSDigest_HMACAlg_SHA256:
return kDNSDigest_HMACSHA256_OutputLengthInBytes;
case kDNSDigest_HMACAlg_SHA384:
return kDNSDigest_HMACSHA384_OutputLengthInBytes;
case kDNSDigest_HMACAlg_SHA512:
return kDNSDigest_HMACSHA512_OutputLengthInBytes;
}
}
// Get the domain name format algorithm identifier for the given algorithm.
mDNSlocal const domainname *DNSDigest_GetHMACName(const DNSDigest_HMACAlgorithm algorithm)
{
switch (algorithm) {
case kDNSDigest_HMACAlg_None:
return kHMAC_None_AlgName;
case kDNSDigest_HMACAlg_MD5:
return kHMAC_MD5_AlgName;
case kDNSDigest_HMACAlg_SHA1:
return kHMAC_SHA1_AlgName;
case kDNSDigest_HMACAlg_SHA224:
return kHMAC_SHA224_AlgName;
case kDNSDigest_HMACAlg_SHA256:
return kHMAC_SHA256_AlgName;
case kDNSDigest_HMACAlg_SHA384:
return kHMAC_SHA384_AlgName;
case kDNSDigest_HMACAlg_SHA512:
return kHMAC_SHA512_AlgName;
}
}
// Get the algorithm enum given the domain name format algorithm identifier.
mDNSlocal DNSDigest_HMACAlgorithm DNSDigest_GetHMACAlgorithmFromName(const domainname *const algorithmName)
{
if (algorithmName == mDNSNULL)
{
return kDNSDigest_HMACAlg_None;
}
else if (SameDomainName(algorithmName, kHMAC_MD5_AlgName))
{
return kDNSDigest_HMACAlg_MD5;
}
else if (SameDomainName(algorithmName, kHMAC_SHA1_AlgName))
{
return kDNSDigest_HMACAlg_SHA1;
}
else if (SameDomainName(algorithmName, kHMAC_SHA224_AlgName))
{
return kDNSDigest_HMACAlg_SHA224;
}
else if (SameDomainName(algorithmName, kHMAC_SHA256_AlgName))
{
return kDNSDigest_HMACAlg_SHA256;
}
else if (SameDomainName(algorithmName, kHMAC_SHA384_AlgName))
{
return kDNSDigest_HMACAlg_SHA384;
}
else if (SameDomainName(algorithmName, kHMAC_SHA512_AlgName))
{
return kDNSDigest_HMACAlg_SHA512;
}
else
{
return kDNSDigest_HMACAlg_None;
}
}
#else // MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
// Constants
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
#define MD5_LEN 16
// Adapted from Appendix, RFC 2104
mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
{
MD5_CTX k;
mDNSu8 buf[MD5_LEN];
int i;
// If key is longer than HMAC_LEN reset it to MD5(key)
if (len > HMAC_LEN)
{
MD5_Init(&k);
MD5_Update(&k, key, len);
MD5_Final(buf, &k);
key = buf;
len = MD5_LEN;
}
// store key in pads
mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
mDNSPlatformMemCopy(info->keydata_ipad, key, len);
mDNSPlatformMemCopy(info->keydata_opad, key, len);
// XOR key with ipad and opad values
for (i = 0; i < HMAC_LEN; i++)
{
info->keydata_ipad[i] ^= HMAC_IPAD;
info->keydata_opad[i] ^= HMAC_OPAD;
}
}
#endif // MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
{
mDNSu8 keybuf[1024];
mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
if (keylen < 0) return(keylen);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
info->key_len = (mDNSu32)keylen;
info->algorithm = DNSDigest_GetHMACAlgorithmFromKeyLengthInBytes(info->key_len);
if (info->algorithm == kDNSDigest_HMACAlg_None)
{
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_ERROR,
"Invalid HMAC secret key length, should be 16(HMAC MD5), 20(HMAC SHA1), 28(HMAC SHA224), 32(HMAC SHA256), 48(HMAC SHA384) or 64(HMAC SHA512)"
" - actual length: %u", info->key_len);
return -1;
}
if (sizeof(info->key) < (size_t)keylen)
{
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_FAULT, "Key is too long, unable to save it in the buffer - "
"buffer length: %zu, actual key length: %d", sizeof(info->key), keylen);
return -1;
}
memcpy(info->key, keybuf, keylen);
#else
DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
#endif
return(keylen);
}
mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
{
AuthRecord tsig;
mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value
mDNSu32 utc32;
mDNSu8 utc48[6];
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
mDNSu8 digest[kDNSDigest_HMACOutputLengthInBytesMAX];
#else
mDNSu8 digest[MD5_LEN];
#endif
mDNSu8 *ptr = *end;
mDNSu32 len;
mDNSOpaque16 buf;
mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
const DNSDigest_HMACAlgorithm algorithm = info->algorithm;
CCHmacContext hmacContext;
#else
MD5_CTX c;
#endif
// Initialize HMAC context.
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacInit(&hmacContext, DNSDigest_GetCCHmacAlgorithm(algorithm), info->key, info->key_len);
#else
// Init MD5 context, digest inner key pad and message
MD5_Init(&c);
MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
#endif
// Digest the entire DNS message.
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, (mDNSu8 *)msg, (size_t)(*end - (mDNSu8 *)msg));
#else
MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
#endif
// Construct TSIG RR, digesting variables as apporpriate
mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
// key name
AssignDomainName(&tsig.namestorage, &info->keyname);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, info->keyname.c, DomainNameLength(&info->keyname));
#else
MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
#endif
// class
tsig.resrec.rrclass = kDNSQClass_ANY;
buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
#endif
// ttl
tsig.resrec.rroriginalttl = 0;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
#else
MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
#endif
// alg name
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
const domainname *const algorithmName = DNSDigest_GetHMACName(algorithm);
#else
const domainname *const algorithmName = kHMAC_MD5_AlgName;
#endif
AssignDomainName(&tsig.resrec.rdata->u.name, algorithmName);
len = DomainNameLength(algorithmName);
rdata = tsig.resrec.rdata->u.data + len;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, (mDNSu8 *)algorithmName, len);
#else
MD5_Update(&c, (mDNSu8 *)algorithmName, len);
#endif
// time
// get UTC (universal time), convert to 48-bit unsigned in network byte order
utc32 = (mDNSu32)mDNSPlatformUTC();
if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
utc48[0] = 0;
utc48[1] = 0;
utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff);
utc48[5] = (mDNSu8)( utc32 & 0xff);
mDNSPlatformMemCopy(rdata, utc48, 6);
rdata += 6;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, utc48, 6);
#else
MD5_Update(&c, utc48, 6);
#endif
// 300 sec is fudge recommended in RFC 2485
rdata[0] = (mDNSu8)((300 >> 8) & 0xff);
rdata[1] = (mDNSu8)( 300 & 0xff);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, rdata, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
#endif
rdata += sizeof(mDNSOpaque16);
// digest error (tcode) and other data len (zero) - we'll add them to the rdata later
buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
buf.b[1] = (mDNSu8)( tcode & 0xff);
// error code
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
#endif
// other data len
buf.NotAnInteger = 0;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
#endif
mDNSu16 digestLen = 0;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacFinal(&hmacContext, digest);
digestLen = DNSDigest_GetHMACOutputLength(algorithm);
#else
// finish the message & tsig var hash
MD5_Final(digest, &c);
// perform outer MD5 (outer key pad, inner digest)
MD5_Init(&c);
MD5_Update(&c, info->keydata_opad, HMAC_LEN);
MD5_Update(&c, digest, MD5_LEN);
MD5_Final(digest, &c);
digestLen = MD5_LEN;
#endif
// set remaining rdata fields
rdata[0] = (mDNSu8)((digestLen >> 8) & 0xff);
rdata[1] = (mDNSu8)( digestLen & 0xff);
rdata += sizeof(mDNSOpaque16);
mDNSPlatformMemCopy(rdata, digest, digestLen); // MAC
rdata += digestLen;
rdata[0] = msg->h.id.b[0]; // original ID
rdata[1] = msg->h.id.b[1];
rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
rdata[3] = (mDNSu8)( tcode & 0xff);
rdata[4] = 0; // other data len
rdata[5] = 0;
rdata += 6;
tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
*end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
// Write back updated numAdditionals value
countPtr[0] = (mDNSu8)(numAdditionals >> 8);
countPtr[1] = (mDNSu8)(numAdditionals & 0xFF);
}
mDNSexport mDNSBool DNSDigest_VerifyMessage(const DNSMessage *const msg, const mDNSu8 *const end,
const LargeCacheRecord *const lcr, const DomainAuthInfo *const info, mDNSu16 *const rcode, mDNSu16 *const tcode)
{
mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
mDNSs32 now;
mDNSs32 then;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
mDNSu8 thisDigest[kDNSDigest_HMACOutputLengthInBytesMAX];
mDNSu8 thatDigest[kDNSDigest_HMACOutputLengthInBytesMAX];
#else
mDNSu8 thisDigest[MD5_LEN];
mDNSu8 thatDigest[MD5_LEN];
#endif
mDNSOpaque16 buf;
mDNSu8 utc48[6];
mDNSs32 delta;
mDNSu16 fudge;
domainname * algo;
mDNSBool ok = mDNSfalse;
// We only support HMAC-MD5 for now
algo = (domainname*) ptr;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
const DNSDigest_HMACAlgorithm algorithm = DNSDigest_GetHMACAlgorithmFromName(algo);
CCHmacContext hmacContext;
if (algorithm == kDNSDigest_HMACAlg_None || algorithm != info->algorithm)
#else
MD5_CTX c;
if (!SameDomainName(algo, kHMAC_MD5_AlgName))
#endif
{
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_ERROR, "TSIG algorithm not supported - "
"algorithm name: " PUB_DM_NAME, DM_NAME_PARAM(algo));
*rcode = kDNSFlag1_RC_NotAuth;
*tcode = TSIG_ErrBadKey;
ok = mDNSfalse;
goto exit;
}
ptr += DomainNameLength(algo);
// Check the times
now = mDNSPlatformUTC();
if (now == -1)
{
LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
*rcode = kDNSFlag1_RC_NotAuth;
*tcode = TSIG_ErrBadTime;
ok = mDNSfalse;
goto exit;
}
// Get the 48 bit time field, skipping over the first word
utc48[0] = *ptr++;
utc48[1] = *ptr++;
utc48[2] = *ptr++;
utc48[3] = *ptr++;
utc48[4] = *ptr++;
utc48[5] = *ptr++;
then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
fudge = NToH16(ptr);
ptr += sizeof(mDNSu16);
delta = (now > then) ? now - then : then - now;
if (delta > fudge)
{
LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
*rcode = kDNSFlag1_RC_NotAuth;
*tcode = TSIG_ErrBadTime;
ok = mDNSfalse;
goto exit;
}
// MAC size
const mDNSu16 hmacLength = NToH16(ptr);
ptr += sizeof(mDNSu16);
// MAC
mDNSPlatformMemCopy(thatDigest, ptr, hmacLength);
// Initialize HMAC context.
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacInit(&hmacContext, DNSDigest_GetCCHmacAlgorithm(algorithm), info->key, info->key_len);
#else
// Init MD5 context, digest inner key pad and message
MD5_Init(&c);
MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
#endif
// Digest the entire DNS message.
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, (mDNSu8 *)msg, (size_t)(end - (mDNSu8 *)msg));
#else
MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
#endif
// Key name
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
#else
MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
#endif
// Class name
buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
#endif
// TTL
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, (mDNSu8 *) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
#else
MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
#endif
// Algorithm
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, algo->c, DomainNameLength(algo));
#else
MD5_Update(&c, algo->c, DomainNameLength(algo));
#endif
// Time
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, utc48, 6);
#else
MD5_Update(&c, utc48, 6);
#endif
// Fudge
buf = mDNSOpaque16fromIntVal(fudge);
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16));
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
#endif
// Digest error and other data len (both zero) - we'll add them to the rdata later
buf.NotAnInteger = 0;
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16)); // error
CCHmacUpdate(&hmacContext, buf.b, sizeof(mDNSOpaque16)); // other data len
#else
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error
MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len
#endif
// Get the HMAC output.
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
mDNSu16 digestLen = 0;
CCHmacFinal(&hmacContext, thisDigest);
digestLen = DNSDigest_GetHMACOutputLength(algorithm);
#else
// Finish the message & tsig var hash
MD5_Final(thisDigest, &c);
// perform outer MD5 (outer key pad, inner digest)
MD5_Init(&c);
MD5_Update(&c, info->keydata_opad, HMAC_LEN);
MD5_Update(&c, thisDigest, MD5_LEN);
MD5_Final(thisDigest, &c);
#endif
#if MDNSRESPONDER_SUPPORTS(APPLE, SECURE_HMAC_ALGORITHM_2022)
// The MAC must be verified by comparing the computed and expected values using timingsafe_bcmp. Other comparison
// functions (e.g. memcmp) must not be used as they may be vulnerable to practical timing attacks, leading to MAC
// forgery.
if (timingsafe_bcmp(thisDigest, thatDigest, digestLen))
#else
if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
#endif
{
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_ERROR, "DNSDigest_VerifyMessage - bad signature");
*rcode = kDNSFlag1_RC_NotAuth;
*tcode = TSIG_ErrBadSig;
ok = mDNSfalse;
goto exit;
}
// set remaining rdata fields
ok = mDNStrue;
exit:
return ok;
}
#if defined(DEBUG) && DEBUG
// This function is used for debug purpose to ensure that the signature generated by DNSDigest_SignMessage can be
// authenticated by DNSDigest_VerifyMessage.
mDNSexport void DNSDigest_VerifyMessage_Verify(DNSMessage *const msg, const mDNSu8 *const end,
const DomainAuthInfo *const authInfo)
{
// Convert from network byte order to host byte order.
SwapDNSHeaderBytes(msg);
// Locate the TSIG record in the additional section.
mDNSBool verified;
if (!msg->h.numAdditionals)
{
verified = mDNSfalse;
goto exit;
}
const mDNSu8 *ptr = LocateAdditionals(msg, end);
if (!ptr)
{
verified = mDNSfalse;
goto exit;
}
const mDNSu8 *lastPtr = mDNSNULL;
LargeCacheRecord lcr = {0};
mDNSBool hasTSIGAtLast = mDNSfalse;
for (mDNSu32 i = 0; i < msg->h.numAdditionals; i++)
{
lastPtr = ptr;
ptr = GetLargeResourceRecord(mDNSNULL, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &lcr);
if (!ptr)
{
verified = mDNSfalse;
goto exit;
}
if (lcr.r.resrec.RecordType != kDNSRecordTypePacketNegative && lcr.r.resrec.rrtype == kDNSType_TSIG &&
i == msg->h.numAdditionals - 1)
{
hasTSIGAtLast = mDNStrue;
}
}
if (!hasTSIGAtLast)
{
verified = mDNSfalse;
goto exit;
}
// Before doing verification, decrement the additional count by 1 (added by the TSIG record)
// Also go back to network byte order.
msg->h.numAdditionals--;
SwapDNSHeaderBytes(msg);
mDNSu16 rcode;
mDNSu16 tcode;
verified = DNSDigest_VerifyMessage(msg, lastPtr, &lcr, authInfo, &rcode, &tcode);
// Undo the operation above.
SwapDNSHeaderBytes(msg);
msg->h.numAdditionals++;
exit:
if (!verified)
{
LogRedact(MDNS_LOG_CATEGORY_DEFAULT, MDNS_LOG_FAULT, "Failed to verify that DNSDigest_VerifyMessage works.");
}
SwapDNSHeaderBytes(msg);
}
#endif // defined(DEBUG) && DEBUG
#ifdef __cplusplus
}
#endif