| /* |
| * The following code is directly copied from <sys/queue.h>. |
| * For the usage of <sys/queue.h>, see https://linux.die.net/man/3/queue. |
| * ======================================================================================= |
| * |
| * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. |
| * |
| * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| * |
| * This file contains Original Code and/or Modifications of Original Code |
| * as defined in and that are subject to the Apple Public Source License |
| * Version 2.0 (the 'License'). You may not use this file except in |
| * compliance with the License. The rights granted to you under the License |
| * may not be used to create, or enable the creation or redistribution of, |
| * unlawful or unlicensed copies of an Apple operating system, or to |
| * circumvent, violate, or enable the circumvention or violation of, any |
| * terms of an Apple operating system software license agreement. |
| * |
| * Please obtain a copy of the License at |
| * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| * |
| * The Original Code and all software distributed under the License are |
| * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| * Please see the License for the specific language governing rights and |
| * limitations under the License. |
| * |
| * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| */ |
| /*- |
| * Copyright (c) 1991, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)queue.h 8.5 (Berkeley) 8/20/94 |
| */ |
| |
| #ifndef _SYS_QUEUE_H_ |
| #define _SYS_QUEUE_H_ |
| |
| #ifndef __improbable |
| #define __improbable(x) (x) /* noop in userspace */ |
| #endif /* __improbable */ |
| |
| /* |
| * This file defines five types of data structures: singly-linked lists, |
| * singly-linked tail queues, lists, tail queues, and circular queues. |
| * |
| * A singly-linked list is headed by a single forward pointer. The elements |
| * are singly linked for minimum space and pointer manipulation overhead at |
| * the expense of O(n) removal for arbitrary elements. New elements can be |
| * added to the list after an existing element or at the head of the list. |
| * Elements being removed from the head of the list should use the explicit |
| * macro for this purpose for optimum efficiency. A singly-linked list may |
| * only be traversed in the forward direction. Singly-linked lists are ideal |
| * for applications with large datasets and few or no removals or for |
| * implementing a LIFO queue. |
| * |
| * A singly-linked tail queue is headed by a pair of pointers, one to the |
| * head of the list and the other to the tail of the list. The elements are |
| * singly linked for minimum space and pointer manipulation overhead at the |
| * expense of O(n) removal for arbitrary elements. New elements can be added |
| * to the list after an existing element, at the head of the list, or at the |
| * end of the list. Elements being removed from the head of the tail queue |
| * should use the explicit macro for this purpose for optimum efficiency. |
| * A singly-linked tail queue may only be traversed in the forward direction. |
| * Singly-linked tail queues are ideal for applications with large datasets |
| * and few or no removals or for implementing a FIFO queue. |
| * |
| * A list is headed by a single forward pointer (or an array of forward |
| * pointers for a hash table header). The elements are doubly linked |
| * so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before |
| * or after an existing element or at the head of the list. A list |
| * may only be traversed in the forward direction. |
| * |
| * A tail queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are doubly |
| * linked so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before or |
| * after an existing element, at the head of the list, or at the end of |
| * the list. A tail queue may be traversed in either direction. |
| * |
| * A circle queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are doubly |
| * linked so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before or after |
| * an existing element, at the head of the list, or at the end of the list. |
| * A circle queue may be traversed in either direction, but has a more |
| * complex end of list detection. |
| * Note that circle queues are deprecated, because, as the removal log |
| * in FreeBSD states, "CIRCLEQs are a disgrace to everything Knuth taught |
| * us in Volume 1 Chapter 2. [...] Use TAILQ instead, it provides the same |
| * functionality." Code using them will continue to compile, but they |
| * are no longer documented on the man page. |
| * |
| * For details on the use of these macros, see the queue(3) manual page. |
| * |
| * |
| * SLIST LIST STAILQ TAILQ CIRCLEQ |
| * _HEAD + + + + + |
| * _HEAD_INITIALIZER + + + + - |
| * _ENTRY + + + + + |
| * _INIT + + + + + |
| * _EMPTY + + + + + |
| * _FIRST + + + + + |
| * _NEXT + + + + + |
| * _PREV - - - + + |
| * _LAST - - + + + |
| * _FOREACH + + + + + |
| * _FOREACH_SAFE + + + + - |
| * _FOREACH_REVERSE - - - + - |
| * _FOREACH_REVERSE_SAFE - - - + - |
| * _INSERT_HEAD + + + + + |
| * _INSERT_BEFORE - + - + + |
| * _INSERT_AFTER + + + + + |
| * _INSERT_TAIL - - + + + |
| * _CONCAT - - + + - |
| * _REMOVE_AFTER + - + - - |
| * _REMOVE_HEAD + - + - - |
| * _REMOVE_HEAD_UNTIL - - + - - |
| * _REMOVE + + + + + |
| * _SWAP - + + + - |
| * |
| */ |
| #ifdef QUEUE_MACRO_DEBUG |
| /* Store the last 2 places the queue element or head was altered */ |
| struct qm_trace { |
| char * lastfile; |
| int lastline; |
| char * prevfile; |
| int prevline; |
| }; |
| |
| #define TRACEBUF struct qm_trace trace; |
| #define TRASHIT(x) do {(x) = (void *)-1;} while (0) |
| |
| #define QMD_TRACE_HEAD(head) do { \ |
| (head)->trace.prevline = (head)->trace.lastline; \ |
| (head)->trace.prevfile = (head)->trace.lastfile; \ |
| (head)->trace.lastline = __LINE__; \ |
| (head)->trace.lastfile = __FILE__; \ |
| } while (0) |
| |
| #define QMD_TRACE_ELEM(elem) do { \ |
| (elem)->trace.prevline = (elem)->trace.lastline; \ |
| (elem)->trace.prevfile = (elem)->trace.lastfile; \ |
| (elem)->trace.lastline = __LINE__; \ |
| (elem)->trace.lastfile = __FILE__; \ |
| } while (0) |
| |
| #else |
| #define QMD_TRACE_ELEM(elem) |
| #define QMD_TRACE_HEAD(head) |
| #define TRACEBUF |
| #define TRASHIT(x) do {(x) = (void *)0;} while (0) |
| #endif /* QUEUE_MACRO_DEBUG */ |
| |
| /* |
| * Horrible macros to enable use of code that was meant to be C-specific |
| * (and which push struct onto type) in C++; without these, C++ code |
| * that uses these macros in the context of a class will blow up |
| * due to "struct" being preprended to "type" by the macros, causing |
| * inconsistent use of tags. |
| * |
| * This approach is necessary because these are macros; we have to use |
| * these on a per-macro basis (because the queues are implemented as |
| * macros, disabling this warning in the scope of the header file is |
| * insufficient), whuch means we can't use #pragma, and have to use |
| * _Pragma. We only need to use these for the queue macros that |
| * prepend "struct" to "type" and will cause C++ to blow up. |
| */ |
| #if defined(__clang__) && defined(__cplusplus) |
| #define __MISMATCH_TAGS_PUSH \ |
| _Pragma("clang diagnostic push") \ |
| _Pragma("clang diagnostic ignored \"-Wmismatched-tags\"") |
| #define __MISMATCH_TAGS_POP \ |
| _Pragma("clang diagnostic pop") |
| #else |
| #define __MISMATCH_TAGS_PUSH |
| #define __MISMATCH_TAGS_POP |
| #endif |
| |
| /*! |
| * Ensures that these macros can safely be used in structs when compiling with |
| * clang. The macros do not allow for nullability attributes to be specified due |
| * to how they are expanded. For example: |
| * |
| * SLIST_HEAD(, foo _Nullable) bar; |
| * |
| * expands to |
| * |
| * struct { |
| * struct foo _Nullable *slh_first; |
| * } |
| * |
| * which is not valid because the nullability specifier has to apply to the |
| * pointer. So just ignore nullability completeness in all the places where this |
| * is an issue. |
| */ |
| #if defined(__clang__) |
| #define __NULLABILITY_COMPLETENESS_PUSH \ |
| _Pragma("clang diagnostic push") \ |
| _Pragma("clang diagnostic ignored \"-Wnullability-completeness\"") |
| #define __NULLABILITY_COMPLETENESS_POP \ |
| _Pragma("clang diagnostic pop") |
| #else |
| #define __NULLABILITY_COMPLETENESS_PUSH |
| #define __NULLABILITY_COMPLETENESS_POP |
| #endif |
| |
| /* |
| * Singly-linked List declarations. |
| */ |
| #define SLIST_HEAD(name, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct name { \ |
| struct type *slh_first; /* first element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define SLIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define SLIST_ENTRY(type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct { \ |
| struct type *sle_next; /* next element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Singly-linked List functions. |
| */ |
| #define SLIST_EMPTY(head) ((head)->slh_first == NULL) |
| |
| #define SLIST_FIRST(head) ((head)->slh_first) |
| |
| #define SLIST_FOREACH(var, head, field) \ |
| for ((var) = SLIST_FIRST((head)); \ |
| (var); \ |
| (var) = SLIST_NEXT((var), field)) |
| |
| #define SLIST_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = SLIST_FIRST((head)); \ |
| (var) && ((tvar) = SLIST_NEXT((var), field), 1); \ |
| (var) = (tvar)) |
| |
| #define SLIST_FOREACH_PREVPTR(var, varp, head, field) \ |
| for ((varp) = &SLIST_FIRST((head)); \ |
| ((var) = *(varp)) != NULL; \ |
| (varp) = &SLIST_NEXT((var), field)) |
| |
| #define SLIST_INIT(head) do { \ |
| SLIST_FIRST((head)) = NULL; \ |
| } while (0) |
| |
| #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
| SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \ |
| SLIST_NEXT((slistelm), field) = (elm); \ |
| } while (0) |
| |
| #define SLIST_INSERT_HEAD(head, elm, field) do { \ |
| SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \ |
| SLIST_FIRST((head)) = (elm); \ |
| } while (0) |
| |
| #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
| |
| #define SLIST_REMOVE(head, elm, type, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| do { \ |
| if (SLIST_FIRST((head)) == (elm)) { \ |
| SLIST_REMOVE_HEAD((head), field); \ |
| } \ |
| else { \ |
| struct type *curelm = SLIST_FIRST((head)); \ |
| while (SLIST_NEXT(curelm, field) != (elm)) \ |
| curelm = SLIST_NEXT(curelm, field); \ |
| SLIST_REMOVE_AFTER(curelm, field); \ |
| } \ |
| } while (0) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define SLIST_REMOVE_AFTER(elm, field) do { \ |
| __typeof__(elm) __remove_elem = SLIST_NEXT(elm, field); \ |
| SLIST_NEXT(elm, field) = \ |
| SLIST_NEXT(__remove_elem, field); \ |
| TRASHIT(__remove_elem->field.sle_next); \ |
| } while (0) |
| |
| #define SLIST_REMOVE_HEAD(head, field) do { \ |
| __typeof__(SLIST_FIRST((head))) __remove_elem = \ |
| SLIST_FIRST((head)); \ |
| SLIST_FIRST((head)) = SLIST_NEXT(__remove_elem, field); \ |
| TRASHIT(__remove_elem->field.sle_next); \ |
| } while (0) |
| |
| /* |
| * Singly-linked Tail queue declarations. |
| */ |
| #define STAILQ_HEAD(name, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct name { \ |
| struct type *stqh_first;/* first element */ \ |
| struct type **stqh_last;/* addr of last next element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define STAILQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).stqh_first } |
| |
| #define STAILQ_ENTRY(type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct { \ |
| struct type *stqe_next; /* next element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Singly-linked Tail queue functions. |
| */ |
| #define STAILQ_CONCAT(head1, head2) do { \ |
| if (!STAILQ_EMPTY((head2))) { \ |
| *(head1)->stqh_last = (head2)->stqh_first; \ |
| (head1)->stqh_last = (head2)->stqh_last; \ |
| STAILQ_INIT((head2)); \ |
| } \ |
| } while (0) |
| |
| #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) |
| |
| #define STAILQ_FIRST(head) ((head)->stqh_first) |
| |
| #define STAILQ_FOREACH(var, head, field) \ |
| for((var) = STAILQ_FIRST((head)); \ |
| (var); \ |
| (var) = STAILQ_NEXT((var), field)) |
| |
| |
| #define STAILQ_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = STAILQ_FIRST((head)); \ |
| (var) && ((tvar) = STAILQ_NEXT((var), field), 1); \ |
| (var) = (tvar)) |
| |
| #define STAILQ_INIT(head) do { \ |
| STAILQ_FIRST((head)) = NULL; \ |
| (head)->stqh_last = &STAILQ_FIRST((head)); \ |
| } while (0) |
| |
| #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ |
| if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\ |
| (head)->stqh_last = &STAILQ_NEXT((elm), field); \ |
| STAILQ_NEXT((tqelm), field) = (elm); \ |
| } while (0) |
| |
| #define STAILQ_INSERT_HEAD(head, elm, field) do { \ |
| if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \ |
| (head)->stqh_last = &STAILQ_NEXT((elm), field); \ |
| STAILQ_FIRST((head)) = (elm); \ |
| } while (0) |
| |
| #define STAILQ_INSERT_TAIL(head, elm, field) do { \ |
| STAILQ_NEXT((elm), field) = NULL; \ |
| *(head)->stqh_last = (elm); \ |
| (head)->stqh_last = &STAILQ_NEXT((elm), field); \ |
| } while (0) |
| |
| #define STAILQ_LAST(head, type, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| (STAILQ_EMPTY((head)) ? \ |
| NULL : \ |
| ((struct type *)(void *) \ |
| ((char *)((head)->stqh_last) - __offsetof(struct type, field))))\ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) |
| |
| #define STAILQ_REMOVE(head, elm, type, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| do { \ |
| if (STAILQ_FIRST((head)) == (elm)) { \ |
| STAILQ_REMOVE_HEAD((head), field); \ |
| } \ |
| else { \ |
| struct type *curelm = STAILQ_FIRST((head)); \ |
| while (STAILQ_NEXT(curelm, field) != (elm)) \ |
| curelm = STAILQ_NEXT(curelm, field); \ |
| STAILQ_REMOVE_AFTER(head, curelm, field); \ |
| } \ |
| } while (0) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define STAILQ_REMOVE_HEAD(head, field) do { \ |
| __typeof__(STAILQ_FIRST((head))) __remove_elem = \ |
| STAILQ_FIRST((head)); \ |
| if ((STAILQ_FIRST((head)) = \ |
| STAILQ_NEXT(__remove_elem, field)) == NULL) \ |
| (head)->stqh_last = &STAILQ_FIRST((head)); \ |
| TRASHIT(__remove_elem->field.stqe_next); \ |
| } while (0) |
| |
| #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \ |
| if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \ |
| (head)->stqh_last = &STAILQ_FIRST((head)); \ |
| TRASHIT((elm)->field.stqe_next); \ |
| } while (0) |
| |
| #define STAILQ_REMOVE_AFTER(head, elm, field) do { \ |
| __typeof__(elm) __remove_elem = STAILQ_NEXT(elm, field); \ |
| if ((STAILQ_NEXT(elm, field) = \ |
| STAILQ_NEXT(__remove_elem, field)) == NULL) \ |
| (head)->stqh_last = &STAILQ_NEXT((elm), field); \ |
| TRASHIT(__remove_elem->field.stqe_next); \ |
| } while (0) |
| |
| #define STAILQ_SWAP(head1, head2, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| do { \ |
| struct type *swap_first = STAILQ_FIRST(head1); \ |
| struct type **swap_last = (head1)->stqh_last; \ |
| STAILQ_FIRST(head1) = STAILQ_FIRST(head2); \ |
| (head1)->stqh_last = (head2)->stqh_last; \ |
| STAILQ_FIRST(head2) = swap_first; \ |
| (head2)->stqh_last = swap_last; \ |
| if (STAILQ_EMPTY(head1)) \ |
| (head1)->stqh_last = &STAILQ_FIRST(head1); \ |
| if (STAILQ_EMPTY(head2)) \ |
| (head2)->stqh_last = &STAILQ_FIRST(head2); \ |
| } while (0) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| |
| /* |
| * List declarations. |
| */ |
| #define LIST_HEAD(name, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct name { \ |
| struct type *lh_first; /* first element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define LIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define LIST_ENTRY(type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct { \ |
| struct type *le_next; /* next element */ \ |
| struct type **le_prev; /* address of previous next element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * List functions. |
| */ |
| |
| #define LIST_CHECK_HEAD(head, field) |
| #define LIST_CHECK_NEXT(elm, field) |
| #define LIST_CHECK_PREV(elm, field) |
| |
| #define LIST_EMPTY(head) ((head)->lh_first == NULL) |
| |
| #define LIST_FIRST(head) ((head)->lh_first) |
| |
| #define LIST_FOREACH(var, head, field) \ |
| for ((var) = LIST_FIRST((head)); \ |
| (var); \ |
| (var) = LIST_NEXT((var), field)) |
| |
| #define LIST_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = LIST_FIRST((head)); \ |
| (var) && ((tvar) = LIST_NEXT((var), field), 1); \ |
| (var) = (tvar)) |
| |
| #define LIST_INIT(head) do { \ |
| LIST_FIRST((head)) = NULL; \ |
| } while (0) |
| |
| #define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
| LIST_CHECK_NEXT(listelm, field); \ |
| if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\ |
| LIST_NEXT((listelm), field)->field.le_prev = \ |
| &LIST_NEXT((elm), field); \ |
| LIST_NEXT((listelm), field) = (elm); \ |
| (elm)->field.le_prev = &LIST_NEXT((listelm), field); \ |
| } while (0) |
| |
| #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
| LIST_CHECK_PREV(listelm, field); \ |
| (elm)->field.le_prev = (listelm)->field.le_prev; \ |
| LIST_NEXT((elm), field) = (listelm); \ |
| *(listelm)->field.le_prev = (elm); \ |
| (listelm)->field.le_prev = &LIST_NEXT((elm), field); \ |
| } while (0) |
| |
| #define LIST_INSERT_HEAD(head, elm, field) do { \ |
| LIST_CHECK_HEAD((head), field); \ |
| if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \ |
| LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\ |
| LIST_FIRST((head)) = (elm); \ |
| (elm)->field.le_prev = &LIST_FIRST((head)); \ |
| } while (0) |
| |
| #define LIST_NEXT(elm, field) ((elm)->field.le_next) |
| |
| #define LIST_REMOVE(elm, field) do { \ |
| LIST_CHECK_NEXT(elm, field); \ |
| LIST_CHECK_PREV(elm, field); \ |
| if (LIST_NEXT((elm), field) != NULL) \ |
| LIST_NEXT((elm), field)->field.le_prev = \ |
| (elm)->field.le_prev; \ |
| *(elm)->field.le_prev = LIST_NEXT((elm), field); \ |
| TRASHIT((elm)->field.le_next); \ |
| TRASHIT((elm)->field.le_prev); \ |
| } while (0) |
| |
| #define LIST_SWAP(head1, head2, type, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| do { \ |
| struct type *swap_tmp = LIST_FIRST((head1)); \ |
| LIST_FIRST((head1)) = LIST_FIRST((head2)); \ |
| LIST_FIRST((head2)) = swap_tmp; \ |
| if ((swap_tmp = LIST_FIRST((head1))) != NULL) \ |
| swap_tmp->field.le_prev = &LIST_FIRST((head1)); \ |
| if ((swap_tmp = LIST_FIRST((head2))) != NULL) \ |
| swap_tmp->field.le_prev = &LIST_FIRST((head2)); \ |
| } while (0) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Tail queue declarations. |
| */ |
| #define TAILQ_HEAD(name, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct name { \ |
| struct type *tqh_first; /* first element */ \ |
| struct type **tqh_last; /* addr of last next element */ \ |
| TRACEBUF \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define TAILQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).tqh_first } |
| |
| #define TAILQ_ENTRY(type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct { \ |
| struct type *tqe_next; /* next element */ \ |
| struct type **tqe_prev; /* address of previous next element */ \ |
| TRACEBUF \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Tail queue functions. |
| */ |
| #define TAILQ_CHECK_HEAD(head, field) |
| #define TAILQ_CHECK_NEXT(elm, field) |
| #define TAILQ_CHECK_PREV(elm, field) |
| |
| #define TAILQ_CONCAT(head1, head2, field) do { \ |
| if (!TAILQ_EMPTY(head2)) { \ |
| *(head1)->tqh_last = (head2)->tqh_first; \ |
| (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \ |
| (head1)->tqh_last = (head2)->tqh_last; \ |
| TAILQ_INIT((head2)); \ |
| QMD_TRACE_HEAD(head1); \ |
| QMD_TRACE_HEAD(head2); \ |
| } \ |
| } while (0) |
| |
| #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) |
| |
| #define TAILQ_FIRST(head) ((head)->tqh_first) |
| |
| #define TAILQ_FOREACH(var, head, field) \ |
| for ((var) = TAILQ_FIRST((head)); \ |
| (var); \ |
| (var) = TAILQ_NEXT((var), field)) |
| |
| #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ |
| for ((var) = TAILQ_FIRST((head)); \ |
| (var) && ((tvar) = TAILQ_NEXT((var), field), 1); \ |
| (var) = (tvar)) |
| |
| #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
| for ((var) = TAILQ_LAST((head), headname); \ |
| (var); \ |
| (var) = TAILQ_PREV((var), headname, field)) |
| |
| #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \ |
| for ((var) = TAILQ_LAST((head), headname); \ |
| (var) && ((tvar) = TAILQ_PREV((var), headname, field), 1); \ |
| (var) = (tvar)) |
| |
| |
| #define TAILQ_INIT(head) do { \ |
| TAILQ_FIRST((head)) = NULL; \ |
| (head)->tqh_last = &TAILQ_FIRST((head)); \ |
| QMD_TRACE_HEAD(head); \ |
| } while (0) |
| |
| |
| #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| TAILQ_CHECK_NEXT(listelm, field); \ |
| if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\ |
| TAILQ_NEXT((elm), field)->field.tqe_prev = \ |
| &TAILQ_NEXT((elm), field); \ |
| else { \ |
| (head)->tqh_last = &TAILQ_NEXT((elm), field); \ |
| QMD_TRACE_HEAD(head); \ |
| } \ |
| TAILQ_NEXT((listelm), field) = (elm); \ |
| (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \ |
| QMD_TRACE_ELEM(&(elm)->field); \ |
| QMD_TRACE_ELEM(&listelm->field); \ |
| } while (0) |
| |
| #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
| TAILQ_CHECK_PREV(listelm, field); \ |
| (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
| TAILQ_NEXT((elm), field) = (listelm); \ |
| *(listelm)->field.tqe_prev = (elm); \ |
| (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \ |
| QMD_TRACE_ELEM(&(elm)->field); \ |
| QMD_TRACE_ELEM(&listelm->field); \ |
| } while (0) |
| |
| #define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
| TAILQ_CHECK_HEAD(head, field); \ |
| if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \ |
| TAILQ_FIRST((head))->field.tqe_prev = \ |
| &TAILQ_NEXT((elm), field); \ |
| else \ |
| (head)->tqh_last = &TAILQ_NEXT((elm), field); \ |
| TAILQ_FIRST((head)) = (elm); \ |
| (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \ |
| QMD_TRACE_HEAD(head); \ |
| QMD_TRACE_ELEM(&(elm)->field); \ |
| } while (0) |
| |
| #define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
| TAILQ_NEXT((elm), field) = NULL; \ |
| (elm)->field.tqe_prev = (head)->tqh_last; \ |
| *(head)->tqh_last = (elm); \ |
| (head)->tqh_last = &TAILQ_NEXT((elm), field); \ |
| QMD_TRACE_HEAD(head); \ |
| QMD_TRACE_ELEM(&(elm)->field); \ |
| } while (0) |
| |
| #define TAILQ_LAST(head, headname) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| (*(((struct headname *)((head)->tqh_last))->tqh_last)) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
| |
| #define TAILQ_PREV(elm, headname, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define TAILQ_REMOVE(head, elm, field) do { \ |
| TAILQ_CHECK_NEXT(elm, field); \ |
| TAILQ_CHECK_PREV(elm, field); \ |
| if ((TAILQ_NEXT((elm), field)) != NULL) \ |
| TAILQ_NEXT((elm), field)->field.tqe_prev = \ |
| (elm)->field.tqe_prev; \ |
| else { \ |
| (head)->tqh_last = (elm)->field.tqe_prev; \ |
| QMD_TRACE_HEAD(head); \ |
| } \ |
| *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \ |
| TRASHIT((elm)->field.tqe_next); \ |
| TRASHIT((elm)->field.tqe_prev); \ |
| QMD_TRACE_ELEM(&(elm)->field); \ |
| } while (0) |
| |
| /* |
| * Why did they switch to spaces for this one macro? |
| */ |
| #define TAILQ_SWAP(head1, head2, type, field) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| do { \ |
| struct type *swap_first = (head1)->tqh_first; \ |
| struct type **swap_last = (head1)->tqh_last; \ |
| (head1)->tqh_first = (head2)->tqh_first; \ |
| (head1)->tqh_last = (head2)->tqh_last; \ |
| (head2)->tqh_first = swap_first; \ |
| (head2)->tqh_last = swap_last; \ |
| if ((swap_first = (head1)->tqh_first) != NULL) \ |
| swap_first->field.tqe_prev = &(head1)->tqh_first; \ |
| else \ |
| (head1)->tqh_last = &(head1)->tqh_first; \ |
| if ((swap_first = (head2)->tqh_first) != NULL) \ |
| swap_first->field.tqe_prev = &(head2)->tqh_first; \ |
| else \ |
| (head2)->tqh_last = &(head2)->tqh_first; \ |
| } while (0) \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Circular queue definitions. |
| */ |
| #define CIRCLEQ_HEAD(name, type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct name { \ |
| struct type *cqh_first; /* first element */ \ |
| struct type *cqh_last; /* last element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| #define CIRCLEQ_ENTRY(type) \ |
| __MISMATCH_TAGS_PUSH \ |
| __NULLABILITY_COMPLETENESS_PUSH \ |
| struct { \ |
| struct type *cqe_next; /* next element */ \ |
| struct type *cqe_prev; /* previous element */ \ |
| } \ |
| __NULLABILITY_COMPLETENESS_POP \ |
| __MISMATCH_TAGS_POP |
| |
| /* |
| * Circular queue functions. |
| */ |
| #define CIRCLEQ_CHECK_HEAD(head, field) |
| #define CIRCLEQ_CHECK_NEXT(head, elm, field) |
| #define CIRCLEQ_CHECK_PREV(head, elm, field) |
| |
| #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) |
| |
| #define CIRCLEQ_FIRST(head) ((head)->cqh_first) |
| |
| #define CIRCLEQ_FOREACH(var, head, field) \ |
| for((var) = (head)->cqh_first; \ |
| (var) != (void *)(head); \ |
| (var) = (var)->field.cqe_next) |
| |
| #define CIRCLEQ_INIT(head) do { \ |
| (head)->cqh_first = (void *)(head); \ |
| (head)->cqh_last = (void *)(head); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| CIRCLEQ_CHECK_NEXT(head, listelm, field); \ |
| (elm)->field.cqe_next = (listelm)->field.cqe_next; \ |
| (elm)->field.cqe_prev = (listelm); \ |
| if ((listelm)->field.cqe_next == (void *)(head)) \ |
| (head)->cqh_last = (elm); \ |
| else \ |
| (listelm)->field.cqe_next->field.cqe_prev = (elm); \ |
| (listelm)->field.cqe_next = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ |
| CIRCLEQ_CHECK_PREV(head, listelm, field); \ |
| (elm)->field.cqe_next = (listelm); \ |
| (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ |
| if ((listelm)->field.cqe_prev == (void *)(head)) \ |
| (head)->cqh_first = (elm); \ |
| else \ |
| (listelm)->field.cqe_prev->field.cqe_next = (elm); \ |
| (listelm)->field.cqe_prev = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ |
| CIRCLEQ_CHECK_HEAD(head, field); \ |
| (elm)->field.cqe_next = (head)->cqh_first; \ |
| (elm)->field.cqe_prev = (void *)(head); \ |
| if ((head)->cqh_last == (void *)(head)) \ |
| (head)->cqh_last = (elm); \ |
| else \ |
| (head)->cqh_first->field.cqe_prev = (elm); \ |
| (head)->cqh_first = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.cqe_next = (void *)(head); \ |
| (elm)->field.cqe_prev = (head)->cqh_last; \ |
| if ((head)->cqh_first == (void *)(head)) \ |
| (head)->cqh_first = (elm); \ |
| else \ |
| (head)->cqh_last->field.cqe_next = (elm); \ |
| (head)->cqh_last = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_LAST(head) ((head)->cqh_last) |
| |
| #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next) |
| |
| #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev) |
| |
| #define CIRCLEQ_REMOVE(head, elm, field) do { \ |
| CIRCLEQ_CHECK_NEXT(head, elm, field); \ |
| CIRCLEQ_CHECK_PREV(head, elm, field); \ |
| if ((elm)->field.cqe_next == (void *)(head)) \ |
| (head)->cqh_last = (elm)->field.cqe_prev; \ |
| else \ |
| (elm)->field.cqe_next->field.cqe_prev = \ |
| (elm)->field.cqe_prev; \ |
| if ((elm)->field.cqe_prev == (void *)(head)) \ |
| (head)->cqh_first = (elm)->field.cqe_next; \ |
| else \ |
| (elm)->field.cqe_prev->field.cqe_next = \ |
| (elm)->field.cqe_next; \ |
| TRASHIT((elm)->field.cqe_next); \ |
| TRASHIT((elm)->field.cqe_prev); \ |
| } while (0) |
| |
| #ifdef _KERNEL |
| |
| #if NOTFB31 |
| |
| /* |
| * XXX insque() and remque() are an old way of handling certain queues. |
| * They bogusly assumes that all queue heads look alike. |
| */ |
| |
| struct quehead { |
| struct quehead *qh_link; |
| struct quehead *qh_rlink; |
| }; |
| |
| #ifdef __GNUC__ |
| #define chkquenext(a) |
| #define chkqueprev(a) |
| |
| static __inline void |
| insque(void *a, void *b) |
| { |
| struct quehead *element = (struct quehead *)a, |
| *head = (struct quehead *)b; |
| chkquenext(head); |
| |
| element->qh_link = head->qh_link; |
| element->qh_rlink = head; |
| head->qh_link = element; |
| element->qh_link->qh_rlink = element; |
| } |
| |
| static __inline void |
| remque(void *a) |
| { |
| struct quehead *element = (struct quehead *)a; |
| chkquenext(element); |
| chkqueprev(element); |
| |
| element->qh_link->qh_rlink = element->qh_rlink; |
| element->qh_rlink->qh_link = element->qh_link; |
| element->qh_rlink = 0; |
| } |
| |
| #else /* !__GNUC__ */ |
| |
| void insque(void *a, void *b); |
| void remque(void *a); |
| |
| #endif /* __GNUC__ */ |
| |
| #endif /* NOTFB31 */ |
| #endif /* _KERNEL */ |
| |
| #endif /* !_SYS_QUEUE_H_ */ |