| /********** |
| This library is free software; you can redistribute it and/or modify it under |
| the terms of the GNU Lesser General Public License as published by the |
| Free Software Foundation; either version 3 of the License, or (at your |
| option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.) |
| |
| This library is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for |
| more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with this library; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| **********/ |
| // "liveMedia" |
| // Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved. |
| // Because MD5 may not be implemented (at least, with the same interface) on all systems, |
| // we have our own implementation. |
| // Implementation |
| |
| #include "ourMD5.hh" |
| #include <NetCommon.h> // for u_int32_t, u_int64_t |
| #include <string.h> |
| |
| #define DIGEST_SIZE_IN_BYTES 16 |
| #define DIGEST_SIZE_IN_HEX_DIGITS (2*DIGEST_SIZE_IN_BYTES) |
| #define DIGEST_SIZE_AS_STRING (DIGEST_SIZE_IN_HEX_DIGITS+1) |
| |
| // The state of a MD5 computation in progress: |
| |
| class MD5Context { |
| public: |
| MD5Context(); |
| ~MD5Context(); |
| |
| void addData(unsigned char const* inputData, unsigned inputDataSize); |
| void end(char* outputDigest /*must point to an array of size DIGEST_SIZE_AS_STRING*/); |
| void finalize(unsigned char* outputDigestInBytes); |
| // Like "end()", except that the argument is a byte array, of size DIGEST_SIZE_IN_BYTES. |
| // This function is used to implement "end()". |
| |
| private: |
| void zeroize(); // to remove potentially sensitive information |
| void transform64Bytes(unsigned char const block[64]); // does the actual MD5 transform |
| |
| private: |
| u_int32_t fState[4]; // ABCD |
| u_int64_t fBitCount; // number of bits, modulo 2^64 |
| unsigned char fWorkingBuffer[64]; |
| }; |
| |
| char* our_MD5Data(unsigned char const* data, unsigned dataSize, char* outputDigest) { |
| MD5Context ctx; |
| |
| ctx.addData(data, dataSize); |
| |
| if (outputDigest == NULL) outputDigest = new char[DIGEST_SIZE_AS_STRING]; |
| ctx.end(outputDigest); |
| |
| return outputDigest; |
| } |
| |
| unsigned char* our_MD5DataRaw(unsigned char const* data, unsigned dataSize, |
| unsigned char* outputDigest) { |
| MD5Context ctx; |
| |
| ctx.addData(data, dataSize); |
| |
| if (outputDigest == NULL) outputDigest = new unsigned char[DIGEST_SIZE_IN_BYTES]; |
| ctx.finalize(outputDigest); |
| |
| return outputDigest; |
| } |
| |
| |
| ////////// MD5Context implementation ////////// |
| |
| MD5Context::MD5Context() |
| : fBitCount(0) { |
| // Initialize with magic constants: |
| fState[0] = 0x67452301; |
| fState[1] = 0xefcdab89; |
| fState[2] = 0x98badcfe; |
| fState[3] = 0x10325476; |
| } |
| |
| MD5Context::~MD5Context() { |
| zeroize(); |
| } |
| |
| void MD5Context::addData(unsigned char const* inputData, unsigned inputDataSize) { |
| // Begin by noting how much of our 64-byte working buffer remains unfilled: |
| u_int64_t const byteCount = fBitCount>>3; |
| unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F); |
| unsigned bufferBytesRemaining = 64 - bufferBytesInUse; |
| |
| // Then update our bit count: |
| fBitCount += inputDataSize<<3; |
| |
| unsigned i = 0; |
| if (inputDataSize >= bufferBytesRemaining) { |
| // We have enough input data to do (64-byte) MD5 transforms. |
| // Do this now, starting with a transform on our working buffer, then with |
| // (as many as possible) transforms on rest of the input data. |
| |
| memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)inputData, bufferBytesRemaining); |
| transform64Bytes(fWorkingBuffer); |
| bufferBytesInUse = 0; |
| |
| for (i = bufferBytesRemaining; i + 63 < inputDataSize; i += 64) { |
| transform64Bytes(&inputData[i]); |
| } |
| } |
| |
| // Copy any remaining (and currently un-transformed) input data into our working buffer: |
| if (i < inputDataSize) { |
| memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)&inputData[i], inputDataSize - i); |
| } |
| } |
| |
| void MD5Context::end(char* outputDigest) { |
| unsigned char digestInBytes[DIGEST_SIZE_IN_BYTES]; |
| finalize(digestInBytes); |
| |
| // Convert the digest from bytes (binary) to hex digits: |
| static char const hex[]="0123456789abcdef"; |
| unsigned i; |
| for (i = 0; i < DIGEST_SIZE_IN_BYTES; ++i) { |
| outputDigest[2*i] = hex[digestInBytes[i] >> 4]; |
| outputDigest[2*i+1] = hex[digestInBytes[i] & 0x0F]; |
| } |
| outputDigest[2*i] = '\0'; |
| } |
| |
| // Routines that unpack 32 and 64-bit values into arrays of bytes (in little-endian order). |
| // (These are used to implement "finalize()".) |
| |
| static void unpack32(unsigned char out[4], u_int32_t in) { |
| for (unsigned i = 0; i < 4; ++i) { |
| out[i] = (unsigned char)((in>>(8*i))&0xFF); |
| } |
| } |
| |
| static void unpack64(unsigned char out[8], u_int64_t in) { |
| for (unsigned i = 0; i < 8; ++i) { |
| out[i] = (unsigned char)((in>>(8*i))&0xFF); |
| } |
| } |
| |
| static unsigned char const PADDING[64] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| void MD5Context::finalize(unsigned char* outputDigestInBytes) { |
| // Unpack our bit count: |
| unsigned char bitCountInBytes[8]; |
| unpack64(bitCountInBytes, fBitCount); |
| |
| // Before 'finalizing', make sure that we transform any remaining bytes in our working buffer: |
| u_int64_t const byteCount = fBitCount>>3; |
| unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F); |
| unsigned numPaddingBytes |
| = (bufferBytesInUse < 56) ? (56 - bufferBytesInUse) : (64 + 56 - bufferBytesInUse); |
| addData(PADDING, numPaddingBytes); |
| |
| addData(bitCountInBytes, 8); |
| |
| // Unpack our 'state' into the output digest: |
| unpack32(&outputDigestInBytes[0], fState[0]); |
| unpack32(&outputDigestInBytes[4], fState[1]); |
| unpack32(&outputDigestInBytes[8], fState[2]); |
| unpack32(&outputDigestInBytes[12], fState[3]); |
| |
| zeroize(); |
| } |
| |
| void MD5Context::zeroize() { |
| fState[0] = fState[1] = fState[2] = fState[3] = 0; |
| fBitCount = 0; |
| for (unsigned i = 0; i < 64; ++i) fWorkingBuffer[i] = 0; |
| } |
| |
| |
| ////////// Implementation of the MD5 transform ("MD5Context::transform64Bytes()") ////////// |
| |
| // Constants for the transform: |
| #define S11 7 |
| #define S12 12 |
| #define S13 17 |
| #define S14 22 |
| #define S21 5 |
| #define S22 9 |
| #define S23 14 |
| #define S24 20 |
| #define S31 4 |
| #define S32 11 |
| #define S33 16 |
| #define S34 23 |
| #define S41 6 |
| #define S42 10 |
| #define S43 15 |
| #define S44 21 |
| |
| // Basic MD5 functions: |
| #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) |
| #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) |
| #define H(x, y, z) ((x) ^ (y) ^ (z)) |
| #define I(x, y, z) ((y) ^ ((x) | (~z))) |
| |
| // Rotate "x" left "n" bits: |
| #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) |
| |
| // Other transforms: |
| #define FF(a, b, c, d, x, s, ac) { \ |
| (a) += F((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define GG(a, b, c, d, x, s, ac) { \ |
| (a) += G((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define HH(a, b, c, d, x, s, ac) { \ |
| (a) += H((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define II(a, b, c, d, x, s, ac) { \ |
| (a) += I((b), (c), (d)) + (x) + (u_int32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| |
| void MD5Context::transform64Bytes(unsigned char const block[64]) { |
| u_int32_t a = fState[0], b = fState[1], c = fState[2], d = fState[3]; |
| |
| // Begin by packing "block" into an array ("x") of 16 32-bit values (in little-endian order): |
| u_int32_t x[16]; |
| for (unsigned i = 0, j = 0; i < 16; ++i, j += 4) { |
| x[i] = ((u_int32_t)block[j]) | (((u_int32_t)block[j+1]) << 8) | (((u_int32_t)block[j+2]) << 16) | (((u_int32_t)block[j+3]) << 24); |
| } |
| |
| // Now, perform the transform on the array "x": |
| |
| // Round 1 |
| FF(a, b, c, d, x[0], S11, 0xd76aa478); // 1 |
| FF(d, a, b, c, x[1], S12, 0xe8c7b756); // 2 |
| FF(c, d, a, b, x[2], S13, 0x242070db); // 3 |
| FF(b, c, d, a, x[3], S14, 0xc1bdceee); // 4 |
| FF(a, b, c, d, x[4], S11, 0xf57c0faf); // 5 |
| FF(d, a, b, c, x[5], S12, 0x4787c62a); // 6 |
| FF(c, d, a, b, x[6], S13, 0xa8304613); // 7 |
| FF(b, c, d, a, x[7], S14, 0xfd469501); // 8 |
| FF(a, b, c, d, x[8], S11, 0x698098d8); // 9 |
| FF(d, a, b, c, x[9], S12, 0x8b44f7af); // 10 |
| FF(c, d, a, b, x[10], S13, 0xffff5bb1); // 11 |
| FF(b, c, d, a, x[11], S14, 0x895cd7be); // 12 |
| FF(a, b, c, d, x[12], S11, 0x6b901122); // 13 |
| FF(d, a, b, c, x[13], S12, 0xfd987193); // 14 |
| FF(c, d, a, b, x[14], S13, 0xa679438e); // 15 |
| FF(b, c, d, a, x[15], S14, 0x49b40821); // 16 |
| |
| // Round 2 |
| GG(a, b, c, d, x[1], S21, 0xf61e2562); // 17 |
| GG(d, a, b, c, x[6], S22, 0xc040b340); // 18 |
| GG(c, d, a, b, x[11], S23, 0x265e5a51); // 19 |
| GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20 |
| GG(a, b, c, d, x[5], S21, 0xd62f105d); // 21 |
| GG(d, a, b, c, x[10], S22, 0x2441453); // 22 |
| GG(c, d, a, b, x[15], S23, 0xd8a1e681); // 23 |
| GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24 |
| GG(a, b, c, d, x[9], S21, 0x21e1cde6); // 25 |
| GG(d, a, b, c, x[14], S22, 0xc33707d6); // 26 |
| GG(c, d, a, b, x[3], S23, 0xf4d50d87); // 27 |
| GG(b, c, d, a, x[8], S24, 0x455a14ed); // 28 |
| GG(a, b, c, d, x[13], S21, 0xa9e3e905); // 29 |
| GG(d, a, b, c, x[2], S22, 0xfcefa3f8); // 30 |
| GG(c, d, a, b, x[7], S23, 0x676f02d9); // 31 |
| GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 |
| |
| // Round 3 |
| HH(a, b, c, d, x[5], S31, 0xfffa3942); // 33 |
| HH(d, a, b, c, x[8], S32, 0x8771f681); // 34 |
| HH(c, d, a, b, x[11], S33, 0x6d9d6122); // 35 |
| HH(b, c, d, a, x[14], S34, 0xfde5380c); // 36 |
| HH(a, b, c, d, x[1], S31, 0xa4beea44); // 37 |
| HH(d, a, b, c, x[4], S32, 0x4bdecfa9); // 38 |
| HH(c, d, a, b, x[7], S33, 0xf6bb4b60); // 39 |
| HH(b, c, d, a, x[10], S34, 0xbebfbc70); // 40 |
| HH(a, b, c, d, x[13], S31, 0x289b7ec6); // 41 |
| HH(d, a, b, c, x[0], S32, 0xeaa127fa); // 42 |
| HH(c, d, a, b, x[3], S33, 0xd4ef3085); // 43 |
| HH(b, c, d, a, x[6], S34, 0x4881d05); // 44 |
| HH(a, b, c, d, x[9], S31, 0xd9d4d039); // 45 |
| HH(d, a, b, c, x[12], S32, 0xe6db99e5); // 46 |
| HH(c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 |
| HH(b, c, d, a, x[2], S34, 0xc4ac5665); // 48 |
| |
| // Round 4 |
| II(a, b, c, d, x[0], S41, 0xf4292244); // 49 |
| II(d, a, b, c, x[7], S42, 0x432aff97); // 50 |
| II(c, d, a, b, x[14], S43, 0xab9423a7); // 51 |
| II(b, c, d, a, x[5], S44, 0xfc93a039); // 52 |
| II(a, b, c, d, x[12], S41, 0x655b59c3); // 53 |
| II(d, a, b, c, x[3], S42, 0x8f0ccc92); // 54 |
| II(c, d, a, b, x[10], S43, 0xffeff47d); // 55 |
| II(b, c, d, a, x[1], S44, 0x85845dd1); // 56 |
| II(a, b, c, d, x[8], S41, 0x6fa87e4f); // 57 |
| II(d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 |
| II(c, d, a, b, x[6], S43, 0xa3014314); // 59 |
| II(b, c, d, a, x[13], S44, 0x4e0811a1); // 60 |
| II(a, b, c, d, x[4], S41, 0xf7537e82); // 61 |
| II(d, a, b, c, x[11], S42, 0xbd3af235); // 62 |
| II(c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63 |
| II(b, c, d, a, x[9], S44, 0xeb86d391); // 64 |
| |
| fState[0] += a; fState[1] += b; fState[2] += c; fState[3] += d; |
| |
| // Zeroize sensitive information. |
| for (unsigned k = 0; k < 16; ++k) x[k] = 0; |
| } |