blob: a9a67c328f141ad05fa9621f50fc2c834ea57e9e [file] [log] [blame]
/**********
This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.)
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**********/
// "liveMedia"
// Copyright (c) 1996-2020 Live Networks, Inc. All rights reserved.
// Because MD5 may not be implemented (at least, with the same interface) on all systems,
// we have our own implementation.
// Implementation
#include "ourMD5.hh"
#include <NetCommon.h> // for u_int32_t, u_int64_t
#include <string.h>
#define DIGEST_SIZE_IN_BYTES 16
#define DIGEST_SIZE_IN_HEX_DIGITS (2*DIGEST_SIZE_IN_BYTES)
#define DIGEST_SIZE_AS_STRING (DIGEST_SIZE_IN_HEX_DIGITS+1)
// The state of a MD5 computation in progress:
class MD5Context {
public:
MD5Context();
~MD5Context();
void addData(unsigned char const* inputData, unsigned inputDataSize);
void end(char* outputDigest /*must point to an array of size DIGEST_SIZE_AS_STRING*/);
void finalize(unsigned char* outputDigestInBytes);
// Like "end()", except that the argument is a byte array, of size DIGEST_SIZE_IN_BYTES.
// This function is used to implement "end()".
private:
void zeroize(); // to remove potentially sensitive information
void transform64Bytes(unsigned char const block[64]); // does the actual MD5 transform
private:
u_int32_t fState[4]; // ABCD
u_int64_t fBitCount; // number of bits, modulo 2^64
unsigned char fWorkingBuffer[64];
};
char* our_MD5Data(unsigned char const* data, unsigned dataSize, char* outputDigest) {
MD5Context ctx;
ctx.addData(data, dataSize);
if (outputDigest == NULL) outputDigest = new char[DIGEST_SIZE_AS_STRING];
ctx.end(outputDigest);
return outputDigest;
}
unsigned char* our_MD5DataRaw(unsigned char const* data, unsigned dataSize,
unsigned char* outputDigest) {
MD5Context ctx;
ctx.addData(data, dataSize);
if (outputDigest == NULL) outputDigest = new unsigned char[DIGEST_SIZE_IN_BYTES];
ctx.finalize(outputDigest);
return outputDigest;
}
////////// MD5Context implementation //////////
MD5Context::MD5Context()
: fBitCount(0) {
// Initialize with magic constants:
fState[0] = 0x67452301;
fState[1] = 0xefcdab89;
fState[2] = 0x98badcfe;
fState[3] = 0x10325476;
}
MD5Context::~MD5Context() {
zeroize();
}
void MD5Context::addData(unsigned char const* inputData, unsigned inputDataSize) {
// Begin by noting how much of our 64-byte working buffer remains unfilled:
u_int64_t const byteCount = fBitCount>>3;
unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F);
unsigned bufferBytesRemaining = 64 - bufferBytesInUse;
// Then update our bit count:
fBitCount += inputDataSize<<3;
unsigned i = 0;
if (inputDataSize >= bufferBytesRemaining) {
// We have enough input data to do (64-byte) MD5 transforms.
// Do this now, starting with a transform on our working buffer, then with
// (as many as possible) transforms on rest of the input data.
memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)inputData, bufferBytesRemaining);
transform64Bytes(fWorkingBuffer);
bufferBytesInUse = 0;
for (i = bufferBytesRemaining; i + 63 < inputDataSize; i += 64) {
transform64Bytes(&inputData[i]);
}
}
// Copy any remaining (and currently un-transformed) input data into our working buffer:
if (i < inputDataSize) {
memcpy((unsigned char*)&fWorkingBuffer[bufferBytesInUse], (unsigned char*)&inputData[i], inputDataSize - i);
}
}
void MD5Context::end(char* outputDigest) {
unsigned char digestInBytes[DIGEST_SIZE_IN_BYTES];
finalize(digestInBytes);
// Convert the digest from bytes (binary) to hex digits:
static char const hex[]="0123456789abcdef";
unsigned i;
for (i = 0; i < DIGEST_SIZE_IN_BYTES; ++i) {
outputDigest[2*i] = hex[digestInBytes[i] >> 4];
outputDigest[2*i+1] = hex[digestInBytes[i] & 0x0F];
}
outputDigest[2*i] = '\0';
}
// Routines that unpack 32 and 64-bit values into arrays of bytes (in little-endian order).
// (These are used to implement "finalize()".)
static void unpack32(unsigned char out[4], u_int32_t in) {
for (unsigned i = 0; i < 4; ++i) {
out[i] = (unsigned char)((in>>(8*i))&0xFF);
}
}
static void unpack64(unsigned char out[8], u_int64_t in) {
for (unsigned i = 0; i < 8; ++i) {
out[i] = (unsigned char)((in>>(8*i))&0xFF);
}
}
static unsigned char const PADDING[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void MD5Context::finalize(unsigned char* outputDigestInBytes) {
// Unpack our bit count:
unsigned char bitCountInBytes[8];
unpack64(bitCountInBytes, fBitCount);
// Before 'finalizing', make sure that we transform any remaining bytes in our working buffer:
u_int64_t const byteCount = fBitCount>>3;
unsigned bufferBytesInUse = (unsigned)(byteCount&0x3F);
unsigned numPaddingBytes
= (bufferBytesInUse < 56) ? (56 - bufferBytesInUse) : (64 + 56 - bufferBytesInUse);
addData(PADDING, numPaddingBytes);
addData(bitCountInBytes, 8);
// Unpack our 'state' into the output digest:
unpack32(&outputDigestInBytes[0], fState[0]);
unpack32(&outputDigestInBytes[4], fState[1]);
unpack32(&outputDigestInBytes[8], fState[2]);
unpack32(&outputDigestInBytes[12], fState[3]);
zeroize();
}
void MD5Context::zeroize() {
fState[0] = fState[1] = fState[2] = fState[3] = 0;
fBitCount = 0;
for (unsigned i = 0; i < 64; ++i) fWorkingBuffer[i] = 0;
}
////////// Implementation of the MD5 transform ("MD5Context::transform64Bytes()") //////////
// Constants for the transform:
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
// Basic MD5 functions:
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
// Rotate "x" left "n" bits:
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
// Other transforms:
#define FF(a, b, c, d, x, s, ac) { \
(a) += F((b), (c), (d)) + (x) + (u_int32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G((b), (c), (d)) + (x) + (u_int32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H((b), (c), (d)) + (x) + (u_int32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I((b), (c), (d)) + (x) + (u_int32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
void MD5Context::transform64Bytes(unsigned char const block[64]) {
u_int32_t a = fState[0], b = fState[1], c = fState[2], d = fState[3];
// Begin by packing "block" into an array ("x") of 16 32-bit values (in little-endian order):
u_int32_t x[16];
for (unsigned i = 0, j = 0; i < 16; ++i, j += 4) {
x[i] = ((u_int32_t)block[j]) | (((u_int32_t)block[j+1]) << 8) | (((u_int32_t)block[j+2]) << 16) | (((u_int32_t)block[j+3]) << 24);
}
// Now, perform the transform on the array "x":
// Round 1
FF(a, b, c, d, x[0], S11, 0xd76aa478); // 1
FF(d, a, b, c, x[1], S12, 0xe8c7b756); // 2
FF(c, d, a, b, x[2], S13, 0x242070db); // 3
FF(b, c, d, a, x[3], S14, 0xc1bdceee); // 4
FF(a, b, c, d, x[4], S11, 0xf57c0faf); // 5
FF(d, a, b, c, x[5], S12, 0x4787c62a); // 6
FF(c, d, a, b, x[6], S13, 0xa8304613); // 7
FF(b, c, d, a, x[7], S14, 0xfd469501); // 8
FF(a, b, c, d, x[8], S11, 0x698098d8); // 9
FF(d, a, b, c, x[9], S12, 0x8b44f7af); // 10
FF(c, d, a, b, x[10], S13, 0xffff5bb1); // 11
FF(b, c, d, a, x[11], S14, 0x895cd7be); // 12
FF(a, b, c, d, x[12], S11, 0x6b901122); // 13
FF(d, a, b, c, x[13], S12, 0xfd987193); // 14
FF(c, d, a, b, x[14], S13, 0xa679438e); // 15
FF(b, c, d, a, x[15], S14, 0x49b40821); // 16
// Round 2
GG(a, b, c, d, x[1], S21, 0xf61e2562); // 17
GG(d, a, b, c, x[6], S22, 0xc040b340); // 18
GG(c, d, a, b, x[11], S23, 0x265e5a51); // 19
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20
GG(a, b, c, d, x[5], S21, 0xd62f105d); // 21
GG(d, a, b, c, x[10], S22, 0x2441453); // 22
GG(c, d, a, b, x[15], S23, 0xd8a1e681); // 23
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24
GG(a, b, c, d, x[9], S21, 0x21e1cde6); // 25
GG(d, a, b, c, x[14], S22, 0xc33707d6); // 26
GG(c, d, a, b, x[3], S23, 0xf4d50d87); // 27
GG(b, c, d, a, x[8], S24, 0x455a14ed); // 28
GG(a, b, c, d, x[13], S21, 0xa9e3e905); // 29
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); // 30
GG(c, d, a, b, x[7], S23, 0x676f02d9); // 31
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32
// Round 3
HH(a, b, c, d, x[5], S31, 0xfffa3942); // 33
HH(d, a, b, c, x[8], S32, 0x8771f681); // 34
HH(c, d, a, b, x[11], S33, 0x6d9d6122); // 35
HH(b, c, d, a, x[14], S34, 0xfde5380c); // 36
HH(a, b, c, d, x[1], S31, 0xa4beea44); // 37
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); // 38
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); // 39
HH(b, c, d, a, x[10], S34, 0xbebfbc70); // 40
HH(a, b, c, d, x[13], S31, 0x289b7ec6); // 41
HH(d, a, b, c, x[0], S32, 0xeaa127fa); // 42
HH(c, d, a, b, x[3], S33, 0xd4ef3085); // 43
HH(b, c, d, a, x[6], S34, 0x4881d05); // 44
HH(a, b, c, d, x[9], S31, 0xd9d4d039); // 45
HH(d, a, b, c, x[12], S32, 0xe6db99e5); // 46
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); // 47
HH(b, c, d, a, x[2], S34, 0xc4ac5665); // 48
// Round 4
II(a, b, c, d, x[0], S41, 0xf4292244); // 49
II(d, a, b, c, x[7], S42, 0x432aff97); // 50
II(c, d, a, b, x[14], S43, 0xab9423a7); // 51
II(b, c, d, a, x[5], S44, 0xfc93a039); // 52
II(a, b, c, d, x[12], S41, 0x655b59c3); // 53
II(d, a, b, c, x[3], S42, 0x8f0ccc92); // 54
II(c, d, a, b, x[10], S43, 0xffeff47d); // 55
II(b, c, d, a, x[1], S44, 0x85845dd1); // 56
II(a, b, c, d, x[8], S41, 0x6fa87e4f); // 57
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58
II(c, d, a, b, x[6], S43, 0xa3014314); // 59
II(b, c, d, a, x[13], S44, 0x4e0811a1); // 60
II(a, b, c, d, x[4], S41, 0xf7537e82); // 61
II(d, a, b, c, x[11], S42, 0xbd3af235); // 62
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63
II(b, c, d, a, x[9], S44, 0xeb86d391); // 64
fState[0] += a; fState[1] += b; fState[2] += c; fState[3] += d;
// Zeroize sensitive information.
for (unsigned k = 0; k < 16; ++k) x[k] = 0;
}