| /* @(#)e_fmod.c 1.3 95/01/18 */ |
| /*- |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #include <sys/cdefs.h> |
| |
| #include <math.h> |
| #include "../bsd_private_base.h" |
| |
| static const float Zero[] = {0.0, -0.0,}; |
| |
| /* |
| * Return the IEEE remainder and set *quo to the last n bits of the |
| * quotient, rounded to the nearest integer. We choose n=31 because |
| * we wind up computing all the integer bits of the quotient anyway as |
| * a side-effect of computing the remainder by the shift and subtract |
| * method. In practice, this is far more bits than are needed to use |
| * remquo in reduction algorithms. |
| */ |
| float |
| remquof(float x, float y, int *quo) |
| { |
| int32_t n,hx,hy,hz,ix,iy,sx,i; |
| u_int32_t q,sxy; |
| |
| GET_FLOAT_WORD(hx,x); |
| GET_FLOAT_WORD(hy,y); |
| sxy = (hx ^ hy) & 0x80000000; |
| sx = hx&0x80000000; /* sign of x */ |
| hx ^=sx; /* |x| */ |
| hy &= 0x7fffffff; /* |y| */ |
| |
| /* purge off exception values */ |
| if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */ |
| return nan_mix_op(x, y, *)/nan_mix_op(x, y, *); |
| if(hx<hy) { |
| q = 0; |
| goto fixup; /* |x|<|y| return x or x-y */ |
| } else if(hx==hy) { |
| *quo = (sxy ? -1 : 1); |
| return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/ |
| } |
| |
| /* determine ix = ilogb(x) */ |
| if(hx<0x00800000) { /* subnormal x */ |
| for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; |
| } else ix = (hx>>23)-127; |
| |
| /* determine iy = ilogb(y) */ |
| if(hy<0x00800000) { /* subnormal y */ |
| for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1; |
| } else iy = (hy>>23)-127; |
| |
| /* set up {hx,lx}, {hy,ly} and align y to x */ |
| if(ix >= -126) |
| hx = 0x00800000|(0x007fffff&hx); |
| else { /* subnormal x, shift x to normal */ |
| n = -126-ix; |
| hx <<= n; |
| } |
| if(iy >= -126) |
| hy = 0x00800000|(0x007fffff&hy); |
| else { /* subnormal y, shift y to normal */ |
| n = -126-iy; |
| hy <<= n; |
| } |
| |
| /* fix point fmod */ |
| n = ix - iy; |
| q = 0; |
| while(n--) { |
| hz=hx-hy; |
| if(hz<0) hx = hx << 1; |
| else {hx = hz << 1; q++;} |
| q <<= 1; |
| } |
| hz=hx-hy; |
| if(hz>=0) {hx=hz;q++;} |
| |
| /* convert back to floating value and restore the sign */ |
| if(hx==0) { /* return sign(x)*0 */ |
| q &= 0x7fffffff; |
| *quo = (sxy ? -q : q); |
| return Zero[(u_int32_t)sx>>31]; |
| } |
| while(hx<0x00800000) { /* normalize x */ |
| hx <<= 1; |
| iy -= 1; |
| } |
| if(iy>= -126) { /* normalize output */ |
| hx = ((hx-0x00800000)|((iy+127)<<23)); |
| } else { /* subnormal output */ |
| n = -126 - iy; |
| hx >>= n; |
| } |
| fixup: |
| SET_FLOAT_WORD(x,hx); |
| y = fabsf(y); |
| if (y < 0x1p-125f) { |
| if (x+x>y || (x+x==y && (q & 1))) { |
| q++; |
| x-=y; |
| } |
| } else if (x>0.5f*y || (x==0.5f*y && (q & 1))) { |
| q++; |
| x-=y; |
| } |
| GET_FLOAT_WORD(hx,x); |
| SET_FLOAT_WORD(x,hx^sx); |
| q &= 0x7fffffff; |
| *quo = (sxy ? -q : q); |
| return x; |
| } |