| /**************************************************************** |
| |
| The author of this software is David M. Gay. |
| |
| Copyright (C) 1998-2000 by Lucent Technologies |
| All Rights Reserved |
| |
| Permission to use, copy, modify, and distribute this software and |
| its documentation for any purpose and without fee is hereby |
| granted, provided that the above copyright notice appear in all |
| copies and that both that the copyright notice and this |
| permission notice and warranty disclaimer appear in supporting |
| documentation, and that the name of Lucent or any of its entities |
| not be used in advertising or publicity pertaining to |
| distribution of the software without specific, written prior |
| permission. |
| |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF |
| THIS SOFTWARE. |
| |
| ****************************************************************/ |
| |
| /* This is a variation on dtoa.c that converts arbitary binary |
| floating-point formats to and from decimal notation. It uses |
| double-precision arithmetic internally, so there are still |
| various #ifdefs that adapt the calculations to the native |
| double-precision arithmetic (any of IEEE, VAX D_floating, |
| or IBM mainframe arithmetic). |
| |
| Please send bug reports to David M. Gay (dmg at acm dot org, |
| with " at " changed at "@" and " dot " changed to "."). |
| */ |
| |
| /* On a machine with IEEE extended-precision registers, it is |
| * necessary to specify double-precision (53-bit) rounding precision |
| * before invoking strtod or dtoa. If the machine uses (the equivalent |
| * of) Intel 80x87 arithmetic, the call |
| * _control87(PC_53, MCW_PC); |
| * does this with many compilers. Whether this or another call is |
| * appropriate depends on the compiler; for this to work, it may be |
| * necessary to #include "float.h" or another system-dependent header |
| * file. |
| */ |
| |
| /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
| * |
| * This strtod returns a nearest machine number to the input decimal |
| * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
| * broken by the IEEE round-even rule. Otherwise ties are broken by |
| * biased rounding (add half and chop). |
| * |
| * Inspired loosely by William D. Clinger's paper "How to Read Floating |
| * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| * |
| * Modifications: |
| * |
| * 1. We only require IEEE, IBM, or VAX double-precision |
| * arithmetic (not IEEE double-extended). |
| * 2. We get by with floating-point arithmetic in a case that |
| * Clinger missed -- when we're computing d * 10^n |
| * for a small integer d and the integer n is not too |
| * much larger than 22 (the maximum integer k for which |
| * we can represent 10^k exactly), we may be able to |
| * compute (d*10^k) * 10^(e-k) with just one roundoff. |
| * 3. Rather than a bit-at-a-time adjustment of the binary |
| * result in the hard case, we use floating-point |
| * arithmetic to determine the adjustment to within |
| * one bit; only in really hard cases do we need to |
| * compute a second residual. |
| * 4. Because of 3., we don't need a large table of powers of 10 |
| * for ten-to-e (just some small tables, e.g. of 10^k |
| * for 0 <= k <= 22). |
| */ |
| |
| /* |
| * #define IEEE_8087 for IEEE-arithmetic machines where the least |
| * significant byte has the lowest address. |
| * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
| * significant byte has the lowest address. |
| * #define Long int on machines with 32-bit ints and 64-bit longs. |
| * #define Sudden_Underflow for IEEE-format machines without gradual |
| * underflow (i.e., that flush to zero on underflow). |
| * #define IBM for IBM mainframe-style floating-point arithmetic. |
| * #define VAX for VAX-style floating-point arithmetic (D_floating). |
| * #define No_leftright to omit left-right logic in fast floating-point |
| * computation of dtoa and gdtoa. This will cause modes 4 and 5 to be |
| * treated the same as modes 2 and 3 for some inputs. |
| * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. |
| * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
| * that use extended-precision instructions to compute rounded |
| * products and quotients) with IBM. |
| * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic |
| * that rounds toward +Infinity. |
| * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased |
| * rounding when the underlying floating-point arithmetic uses |
| * unbiased rounding. This prevent using ordinary floating-point |
| * arithmetic when the result could be computed with one rounding error. |
| * #define Inaccurate_Divide for IEEE-format with correctly rounded |
| * products but inaccurate quotients, e.g., for Intel i860. |
| * #define NO_LONG_LONG on machines that do not have a "long long" |
| * integer type (of >= 64 bits). On such machines, you can |
| * #define Just_16 to store 16 bits per 32-bit Long when doing |
| * high-precision integer arithmetic. Whether this speeds things |
| * up or slows things down depends on the machine and the number |
| * being converted. If long long is available and the name is |
| * something other than "long long", #define Llong to be the name, |
| * and if "unsigned Llong" does not work as an unsigned version of |
| * Llong, #define #ULLong to be the corresponding unsigned type. |
| * #define KR_headers for old-style C function headers. |
| * #define Bad_float_h if your system lacks a float.h or if it does not |
| * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
| * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
| * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
| * if memory is available and otherwise does something you deem |
| * appropriate. If MALLOC is undefined, malloc will be invoked |
| * directly -- and assumed always to succeed. |
| * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
| * memory allocations from a private pool of memory when possible. |
| * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
| * unless #defined to be a different length. This default length |
| * suffices to get rid of MALLOC calls except for unusual cases, |
| * such as decimal-to-binary conversion of a very long string of |
| * digits. When converting IEEE double precision values, the |
| * longest string gdtoa can return is about 751 bytes long. For |
| * conversions by strtod of strings of 800 digits and all gdtoa |
| * conversions of IEEE doubles in single-threaded executions with |
| * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with |
| * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. |
| * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK |
| * #defined automatically on IEEE systems. On such systems, |
| * when INFNAN_CHECK is #defined, strtod checks |
| * for Infinity and NaN (case insensitively). |
| * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
| * strtodg also accepts (case insensitively) strings of the form |
| * NaN(x), where x is a string of hexadecimal digits (optionally |
| * preceded by 0x or 0X) and spaces; if there is only one string |
| * of hexadecimal digits, it is taken for the fraction bits of the |
| * resulting NaN; if there are two or more strings of hexadecimal |
| * digits, each string is assigned to the next available sequence |
| * of 32-bit words of fractions bits (starting with the most |
| * significant), right-aligned in each sequence. |
| * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" |
| * is consumed even when ... has the wrong form (in which case the |
| * "(...)" is consumed but ignored). |
| * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
| * multiple threads. In this case, you must provide (or suitably |
| * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
| * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
| * in pow5mult, ensures lazy evaluation of only one copy of high |
| * powers of 5; omitting this lock would introduce a small |
| * probability of wasting memory, but would otherwise be harmless.) |
| * You must also invoke freedtoa(s) to free the value s returned by |
| * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
| * #define IMPRECISE_INEXACT if you do not care about the setting of |
| * the STRTOG_Inexact bits in the special case of doing IEEE double |
| * precision conversions (which could also be done by the strtog in |
| * dtoa.c). |
| * #define NO_HEX_FP to disable recognition of C9x's hexadecimal |
| * floating-point constants. |
| * #define -DNO_ERRNO to suppress setting errno (in strtod.c and |
| * strtodg.c). |
| * #define NO_STRING_H to use private versions of memcpy. |
| * On some K&R systems, it may also be necessary to |
| * #define DECLARE_SIZE_T in this case. |
| * #define USE_LOCALE to use the current locale's decimal_point value. |
| */ |
| |
| #ifndef GDTOAIMP_H_INCLUDED |
| #define GDTOAIMP_H_INCLUDED |
| #include "gdtoa.h" |
| #include "gd_qnan.h" |
| |
| #if defined(__MINGW32__) || defined(__MINGW64__) |
| #define MULTIPLE_THREADS 1 |
| #define USE_LOCALE 1 |
| #define NO_LOCALE_CACHE 1 |
| #endif /* MinGW */ |
| |
| #ifdef Honor_FLT_ROUNDS |
| #include <fenv.h> |
| #endif |
| |
| #ifdef DEBUG |
| #include <stdio.h> |
| #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
| #endif |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #ifdef MALLOC |
| extern void *MALLOC (size_t); |
| #else |
| #define MALLOC malloc |
| #endif |
| |
| #undef IEEE_Arith |
| #undef Avoid_Underflow |
| #ifdef IEEE_MC68k |
| #define IEEE_Arith |
| #endif |
| #ifdef IEEE_8087 |
| #define IEEE_Arith |
| #endif |
| |
| #include <errno.h> |
| |
| #ifdef NO_ERRNO |
| #define SET_ERRNO(x) |
| #else |
| #define SET_ERRNO(x) \ |
| errno = (x) |
| #endif |
| |
| #ifdef Bad_float_h |
| |
| #ifdef IEEE_Arith |
| #define DBL_DIG 15 |
| #define DBL_MAX_10_EXP 308 |
| #define DBL_MAX_EXP 1024 |
| #define FLT_RADIX 2 |
| #define DBL_MAX 1.7976931348623157e+308 |
| #endif |
| |
| #ifdef IBM |
| #define DBL_DIG 16 |
| #define DBL_MAX_10_EXP 75 |
| #define DBL_MAX_EXP 63 |
| #define FLT_RADIX 16 |
| #define DBL_MAX 7.2370055773322621e+75 |
| #endif |
| |
| #ifdef VAX |
| #define DBL_DIG 16 |
| #define DBL_MAX_10_EXP 38 |
| #define DBL_MAX_EXP 127 |
| #define FLT_RADIX 2 |
| #define DBL_MAX 1.7014118346046923e+38 |
| #define n_bigtens 2 |
| #endif |
| |
| #ifndef LONG_MAX |
| #define LONG_MAX 2147483647 |
| #endif |
| |
| #else /* ifndef Bad_float_h */ |
| #include <float.h> |
| #endif /* Bad_float_h */ |
| |
| #ifdef IEEE_Arith |
| #define Scale_Bit 0x10 |
| #define n_bigtens 5 |
| #endif |
| |
| #ifdef IBM |
| #define n_bigtens 3 |
| #endif |
| |
| #ifdef VAX |
| #define n_bigtens 2 |
| #endif |
| |
| #ifndef __MATH_H__ |
| #include <math.h> |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 |
| Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. |
| #endif |
| |
| typedef union _dbl_union { double d; ULong L[2]; } dbl_union; |
| |
| #ifdef IEEE_8087 |
| #define word0(x) (x)->L[1] |
| #define word1(x) (x)->L[0] |
| #else |
| #define word0(x) (x)->L[0] |
| #define word1(x) (x)->L[1] |
| #endif |
| #define dval(x) (x)->d |
| |
| /* The following definition of Storeinc is appropriate for MIPS processors. |
| * An alternative that might be better on some machines is |
| * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
| */ |
| #if defined(IEEE_8087) + defined(VAX) |
| #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
| ((unsigned short *)a)[0] = (unsigned short)c, a++) |
| #else |
| #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
| ((unsigned short *)a)[1] = (unsigned short)c, a++) |
| #endif |
| |
| /* #define P DBL_MANT_DIG */ |
| /* Ten_pmax = floor(P*log(2)/log(5)) */ |
| /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| |
| #ifdef IEEE_Arith |
| #define Exp_shift 20 |
| #define Exp_shift1 20 |
| #define Exp_msk1 0x100000 |
| #define Exp_msk11 0x100000 |
| #define Exp_mask 0x7ff00000 |
| #define P 53 |
| #define Bias 1023 |
| #define Emin (-1022) |
| #define Exp_1 0x3ff00000 |
| #define Exp_11 0x3ff00000 |
| #define Ebits 11 |
| #define Frac_mask 0xfffff |
| #define Frac_mask1 0xfffff |
| #define Ten_pmax 22 |
| #define Bletch 0x10 |
| #define Bndry_mask 0xfffff |
| #define Bndry_mask1 0xfffff |
| #define LSB 1 |
| #define Sign_bit 0x80000000 |
| #define Log2P 1 |
| #define Tiny0 0 |
| #define Tiny1 1 |
| #define Quick_max 14 |
| #define Int_max 14 |
| |
| #ifndef Flt_Rounds |
| #ifdef FLT_ROUNDS |
| #define Flt_Rounds FLT_ROUNDS |
| #else |
| #define Flt_Rounds 1 |
| #endif |
| #endif /*Flt_Rounds*/ |
| |
| #else /* ifndef IEEE_Arith */ |
| #undef Sudden_Underflow |
| #define Sudden_Underflow |
| #ifdef IBM |
| #undef Flt_Rounds |
| #define Flt_Rounds 0 |
| #define Exp_shift 24 |
| #define Exp_shift1 24 |
| #define Exp_msk1 0x1000000 |
| #define Exp_msk11 0x1000000 |
| #define Exp_mask 0x7f000000 |
| #define P 14 |
| #define Bias 65 |
| #define Exp_1 0x41000000 |
| #define Exp_11 0x41000000 |
| #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
| #define Frac_mask 0xffffff |
| #define Frac_mask1 0xffffff |
| #define Bletch 4 |
| #define Ten_pmax 22 |
| #define Bndry_mask 0xefffff |
| #define Bndry_mask1 0xffffff |
| #define LSB 1 |
| #define Sign_bit 0x80000000 |
| #define Log2P 4 |
| #define Tiny0 0x100000 |
| #define Tiny1 0 |
| #define Quick_max 14 |
| #define Int_max 15 |
| #else /* VAX */ |
| #undef Flt_Rounds |
| #define Flt_Rounds 1 |
| #define Exp_shift 23 |
| #define Exp_shift1 7 |
| #define Exp_msk1 0x80 |
| #define Exp_msk11 0x800000 |
| #define Exp_mask 0x7f80 |
| #define P 56 |
| #define Bias 129 |
| #define Exp_1 0x40800000 |
| #define Exp_11 0x4080 |
| #define Ebits 8 |
| #define Frac_mask 0x7fffff |
| #define Frac_mask1 0xffff007f |
| #define Ten_pmax 24 |
| #define Bletch 2 |
| #define Bndry_mask 0xffff007f |
| #define Bndry_mask1 0xffff007f |
| #define LSB 0x10000 |
| #define Sign_bit 0x8000 |
| #define Log2P 1 |
| #define Tiny0 0x80 |
| #define Tiny1 0 |
| #define Quick_max 15 |
| #define Int_max 15 |
| #endif /* IBM, VAX */ |
| #endif /* IEEE_Arith */ |
| |
| #ifndef IEEE_Arith |
| #define ROUND_BIASED |
| #else |
| #ifdef ROUND_BIASED_without_Round_Up |
| #undef ROUND_BIASED |
| #define ROUND_BIASED |
| #endif |
| #endif |
| |
| #ifdef RND_PRODQUOT |
| #define rounded_product(a,b) a = rnd_prod(a, b) |
| #define rounded_quotient(a,b) a = rnd_quot(a, b) |
| extern double rnd_prod(double, double), rnd_quot(double, double); |
| #else |
| #define rounded_product(a,b) a *= b |
| #define rounded_quotient(a,b) a /= b |
| #endif |
| |
| #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| #define Big1 0xffffffff |
| |
| #undef Pack_16 |
| #ifndef Pack_32 |
| #define Pack_32 |
| #endif |
| |
| #ifdef NO_LONG_LONG |
| #undef ULLong |
| #ifdef Just_16 |
| #undef Pack_32 |
| #define Pack_16 |
| /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
| * This makes some inner loops simpler and sometimes saves work |
| * during multiplications, but it often seems to make things slightly |
| * slower. Hence the default is now to store 32 bits per Long. |
| */ |
| #endif |
| #else /* long long available */ |
| #ifndef Llong |
| #define Llong long long |
| #endif |
| #ifndef ULLong |
| #define ULLong unsigned Llong |
| #endif |
| #endif /* NO_LONG_LONG */ |
| |
| #ifdef Pack_32 |
| #define ULbits 32 |
| #define kshift 5 |
| #define kmask 31 |
| #define ALL_ON 0xffffffff |
| #else |
| #define ULbits 16 |
| #define kshift 4 |
| #define kmask 15 |
| #define ALL_ON 0xffff |
| #endif |
| |
| #ifndef MULTIPLE_THREADS |
| #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ |
| #define FREE_DTOA_LOCK(n) /*nothing*/ |
| #endif |
| |
| #define Kmax 9 |
| |
| #define Bigint __Bigint |
| struct |
| Bigint { |
| struct Bigint *next; |
| int k, maxwds, sign, wds; |
| ULong x[1]; |
| }; |
| typedef struct Bigint Bigint; |
| |
| #ifdef NO_STRING_H |
| #ifdef DECLARE_SIZE_T |
| typedef unsigned int size_t; |
| #endif |
| extern void memcpy_D2A (void*, const void*, size_t); |
| #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) |
| #else /* !NO_STRING_H */ |
| #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) |
| #endif /* NO_STRING_H */ |
| |
| #ifdef __GNUC__ |
| static inline int |
| __lo0bits_D2A (ULong *y) |
| { |
| int ret = __builtin_ctz(*y); |
| *y = *y >> ret; |
| return ret; |
| } |
| |
| static inline int |
| __hi0bits_D2A (ULong y) |
| { |
| return __builtin_clz(y); |
| } |
| #endif |
| |
| #define Balloc __Balloc_D2A |
| #define Bfree __Bfree_D2A |
| #define ULtoQ __ULtoQ_D2A |
| #define ULtof __ULtof_D2A |
| #define ULtod __ULtod_D2A |
| #define ULtodd __ULtodd_D2A |
| #define ULtox __ULtox_D2A |
| #define ULtoxL __ULtoxL_D2A |
| #define any_on __any_on_D2A |
| #define b2d __b2d_D2A |
| #define bigtens __bigtens_D2A |
| #define cmp __cmp_D2A |
| #define copybits __copybits_D2A |
| #define d2b __d2b_D2A |
| #define decrement __decrement_D2A |
| #define diff __diff_D2A |
| #define dtoa_result __dtoa_result_D2A |
| #define gethex __gethex_D2A |
| #define hexdig __hexdig_D2A |
| #define hexnan __hexnan_D2A |
| #define hi0bits_D2A __hi0bits_D2A |
| #define hi0bits(x) __hi0bits_D2A((ULong)(x)) |
| #define i2b __i2b_D2A |
| #define increment __increment_D2A |
| #define lo0bits __lo0bits_D2A |
| #define lshift __lshift_D2A |
| #define match __match_D2A |
| #define mult __mult_D2A |
| #define multadd __multadd_D2A |
| #define nrv_alloc __nrv_alloc_D2A |
| #define pow5mult __pow5mult_D2A |
| #define quorem __quorem_D2A |
| #define ratio __ratio_D2A |
| #define rshift __rshift_D2A |
| #define rv_alloc __rv_alloc_D2A |
| #define s2b __s2b_D2A |
| #define set_ones __set_ones_D2A |
| #define strcp_D2A __strcp_D2A |
| #define strcp __strcp_D2A |
| #define strtoIg __strtoIg_D2A |
| #define sum __sum_D2A |
| #define tens __tens_D2A |
| #define tinytens __tinytens_D2A |
| #define tinytens __tinytens_D2A |
| #define trailz __trailz_D2A |
| #define ulp __ulp_D2A |
| |
| #define hexdig_init_D2A __mingw_hexdig_init_D2A |
| |
| extern char *dtoa_result; |
| extern const double bigtens[], tens[], tinytens[]; |
| extern unsigned char hexdig[]; |
| |
| extern Bigint *Balloc (int); |
| extern void Bfree (Bigint*); |
| extern void ULtof (ULong*, ULong*, Long, int); |
| extern void ULtod (ULong*, ULong*, Long, int); |
| extern void ULtodd (ULong*, ULong*, Long, int); |
| extern void ULtoQ (ULong*, ULong*, Long, int); |
| extern void ULtox (UShort*, ULong*, Long, int); |
| extern void ULtoxL (ULong*, ULong*, Long, int); |
| extern ULong any_on (Bigint*, int); |
| extern double b2d (Bigint*, int*); |
| extern int cmp (Bigint*, Bigint*); |
| extern void copybits (ULong*, int, Bigint*); |
| extern Bigint *d2b (double, int*, int*); |
| extern void decrement (Bigint*); |
| extern Bigint *diff (Bigint*, Bigint*); |
| extern int gethex (const char**, FPI*, Long*, Bigint**, int); |
| extern void hexdig_init_D2A(void); |
| extern int hexnan (const char**, FPI*, ULong*); |
| extern int hi0bits_D2A (ULong); |
| extern Bigint *i2b (int); |
| extern Bigint *increment (Bigint*); |
| extern int lo0bits (ULong*); |
| extern Bigint *lshift (Bigint*, int); |
| extern int match (const char**, char*); |
| extern Bigint *mult (Bigint*, Bigint*); |
| extern Bigint *multadd (Bigint*, int, int); |
| extern char *nrv_alloc (char*, char **, int); |
| extern Bigint *pow5mult (Bigint*, int); |
| extern int quorem (Bigint*, Bigint*); |
| extern double ratio (Bigint*, Bigint*); |
| extern void rshift (Bigint*, int); |
| extern char *rv_alloc (int); |
| extern Bigint *s2b (const char*, int, int, ULong, int); |
| extern Bigint *set_ones (Bigint*, int); |
| extern char *strcp (char*, const char*); |
| extern Bigint *sum (Bigint*, Bigint*); |
| extern int trailz (Bigint*); |
| extern double ulp (dbl_union *); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| /* |
| * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to |
| * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, |
| * respectively), but now are determined by compiling and running |
| * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. |
| * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... |
| * and -DNAN_WORD1=... values if necessary. This should still work. |
| * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
| */ |
| #ifdef IEEE_Arith |
| #ifndef NO_INFNAN_CHECK |
| #undef INFNAN_CHECK |
| #define INFNAN_CHECK |
| #endif |
| #ifdef IEEE_MC68k |
| #define _0 0 |
| #define _1 1 |
| #ifndef NAN_WORD0 |
| #define NAN_WORD0 d_QNAN0 |
| #endif |
| #ifndef NAN_WORD1 |
| #define NAN_WORD1 d_QNAN1 |
| #endif |
| #else |
| #define _0 1 |
| #define _1 0 |
| #ifndef NAN_WORD0 |
| #define NAN_WORD0 d_QNAN1 |
| #endif |
| #ifndef NAN_WORD1 |
| #define NAN_WORD1 d_QNAN0 |
| #endif |
| #endif |
| #else |
| #undef INFNAN_CHECK |
| #endif |
| |
| #undef SI |
| #ifdef Sudden_Underflow |
| #define SI 1 |
| #else |
| #define SI 0 |
| #endif |
| |
| #endif /* GDTOAIMP_H_INCLUDED */ |