#ifndef _CEPHES_EMATH_H | |
#define _CEPHES_EMATH_H | |
/* This file is extracted from S L Moshier's ioldoubl.c, | |
* modified for use in MinGW | |
* | |
* Extended precision arithmetic functions for long double I/O. | |
* This program has been placed in the public domain. | |
*/ | |
/* | |
* Revision history: | |
* | |
* 5 Jan 84 PDP-11 assembly language version | |
* 6 Dec 86 C language version | |
* 30 Aug 88 100 digit version, improved rounding | |
* 15 May 92 80-bit long double support | |
* | |
* Author: S. L. Moshier. | |
* | |
* 6 Oct 02 Modified for MinGW by inlining utility routines, | |
* removing global variables, and splitting out strtold | |
* from _IO_ldtoa and _IO_ldtostr. | |
* | |
* Danny Smith <dannysmith@users.sourceforge.net> | |
* | |
*/ | |
/* ieee.c | |
* | |
* Extended precision IEEE binary floating point arithmetic routines | |
* | |
* Numbers are stored in C language as arrays of 16-bit unsigned | |
* short integers. The arguments of the routines are pointers to | |
* the arrays. | |
* | |
* | |
* External e type data structure, simulates Intel 8087 chip | |
* temporary real format but possibly with a larger significand: | |
* | |
* NE-1 significand words (least significant word first, | |
* most significant bit is normally set) | |
* exponent (value = EXONE for 1.0, | |
* top bit is the sign) | |
* | |
* | |
* Internal data structure of a number (a "word" is 16 bits): | |
* | |
* ei[0] sign word (0 for positive, 0xffff for negative) | |
* ei[1] biased __exponent (value = EXONE for the number 1.0) | |
* ei[2] high guard word (always zero after normalization) | |
* ei[3] | |
* to ei[NI-2] significand (NI-4 significand words, | |
* most significant word first, | |
* most significant bit is set) | |
* ei[NI-1] low guard word (0x8000 bit is rounding place) | |
* | |
* | |
* | |
* Routines for external format numbers | |
* | |
* __asctoe64( string, &d ) ASCII string to long double | |
* __asctoeg( string, e, prec ) ASCII string to specified precision | |
* __e64toe( &d, e ) IEEE long double precision to e type | |
* __eadd( a, b, c ) c = b + a | |
* __eclear(e) e = 0 | |
* __ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
* -1 if a < b, -2 if either a or b is a NaN. | |
* __ediv( a, b, c ) c = b / a | |
* __efloor( a, b ) truncate to integer, toward -infinity | |
* __efrexp( a, exp, s ) extract exponent and significand | |
* __eifrac( e, &l, frac ) e to long integer and e type fraction | |
* __euifrac( e, &l, frac ) e to unsigned long integer and e type fraction | |
* __einfin( e ) set e to infinity, leaving its sign alone | |
* __eldexp( a, n, b ) multiply by 2**n | |
* __emov( a, b ) b = a | |
* __emul( a, b, c ) c = b * a | |
* __eneg(e) e = -e | |
* __eround( a, b ) b = nearest integer value to a | |
* __esub( a, b, c ) c = b - a | |
* __e24toasc( &f, str, n ) single to ASCII string, n digits after decimal | |
* __e53toasc( &d, str, n ) double to ASCII string, n digits after decimal | |
* __e64toasc( &d, str, n ) long double to ASCII string | |
* __etoasc( e, str, n ) e to ASCII string, n digits after decimal | |
* __etoe24( e, &f ) convert e type to IEEE single precision | |
* __etoe53( e, &d ) convert e type to IEEE double precision | |
* __etoe64( e, &d ) convert e type to IEEE long double precision | |
* __eisneg( e ) 1 if sign bit of e != 0, else 0 | |
* __eisinf( e ) 1 if e has maximum exponent (non-IEEE) | |
* or is infinite (IEEE) | |
* __eisnan( e ) 1 if e is a NaN | |
* __esqrt( a, b ) b = square root of a | |
* | |
* | |
* Routines for internal format numbers | |
* | |
* __eaddm( ai, bi ) add significands, bi = bi + ai | |
* __ecleaz(ei) ei = 0 | |
* __ecleazs(ei) set ei = 0 but leave its sign alone | |
* __ecmpm( ai, bi ) compare significands, return 1, 0, or -1 | |
* __edivm( ai, bi ) divide significands, bi = bi / ai | |
* __emdnorm(ai,l,s,exp) normalize and round off | |
* __emovi( a, ai ) convert external a to internal ai | |
* __emovo( ai, a ) convert internal ai to external a | |
* __emovz( ai, bi ) bi = ai, low guard word of bi = 0 | |
* __emulm( ai, bi ) multiply significands, bi = bi * ai | |
* __enormlz(ei) left-justify the significand | |
* __eshdn1( ai ) shift significand and guards down 1 bit | |
* __eshdn8( ai ) shift down 8 bits | |
* __eshdn6( ai ) shift down 16 bits | |
* __eshift( ai, n ) shift ai n bits up (or down if n < 0) | |
* __eshup1( ai ) shift significand and guards up 1 bit | |
* __eshup8( ai ) shift up 8 bits | |
* __eshup6( ai ) shift up 16 bits | |
* __esubm( ai, bi ) subtract significands, bi = bi - ai | |
* | |
* | |
* The result is always normalized and rounded to NI-4 word precision | |
* after each arithmetic operation. | |
* | |
* Exception flags are NOT fully supported. | |
* | |
* Define INFINITY in mconf.h for support of infinity; otherwise a | |
* saturation arithmetic is implemented. | |
* | |
* Define NANS for support of Not-a-Number items; otherwise the | |
* arithmetic will never produce a NaN output, and might be confused | |
* by a NaN input. | |
* If NaN's are supported, the output of ecmp(a,b) is -2 if | |
* either a or b is a NaN. This means asking if(ecmp(a,b) < 0) | |
* may not be legitimate. Use if(ecmp(a,b) == -1) for less-than | |
* if in doubt. | |
* Signaling NaN's are NOT supported; they are treated the same | |
* as quiet NaN's. | |
* | |
* Denormals are always supported here where appropriate (e.g., not | |
* for conversion to DEC numbers). | |
*/ | |
#include <stdio.h> | |
#include <stdlib.h> | |
#include <string.h> | |
#include <errno.h> | |
#include <math.h> | |
#include <locale.h> | |
#include <ctype.h> | |
#define alloca __builtin_alloca | |
/* Don't build non-ANSI _IO_ldtoa. It is not thread safe. */ | |
#ifndef USE_LDTOA | |
#define USE_LDTOA 0 | |
#endif | |
/* Number of 16 bit words in external x type format */ | |
#define NE 6 | |
/* Number of 16 bit words in internal format */ | |
#define NI (NE+3) | |
/* Array offset to exponent */ | |
#define E 1 | |
/* Array offset to high guard word */ | |
#define M 2 | |
/* Number of bits of precision */ | |
#define NBITS ((NI-4)*16) | |
/* Maximum number of decimal digits in ASCII conversion | |
* = NBITS*log10(2) | |
*/ | |
#define NDEC (NBITS*8/27) | |
/* The exponent of 1.0 */ | |
#define EXONE (0x3fff) | |
#define mtherr(x,y) | |
extern long double strtold (const char * __restrict__ s, char ** __restrict__ se); | |
extern int __asctoe64(const char * __restrict__ ss, | |
short unsigned int * __restrict__ y); | |
extern void __emul(const short unsigned int * a, | |
const short unsigned int * b, | |
short unsigned int * c); | |
extern int __ecmp(const short unsigned int * __restrict__ a, | |
const short unsigned int * __restrict__ b); | |
extern int __enormlz(short unsigned int *x); | |
extern int __eshift(short unsigned int *x, int sc); | |
extern void __eaddm(const short unsigned int * __restrict__ x, | |
short unsigned int * __restrict__ y); | |
extern void __esubm(const short unsigned int * __restrict__ x, | |
short unsigned int * __restrict__ y); | |
extern void __emdnorm(short unsigned int *s, int lost, int subflg, | |
int exp, int rcntrl, const int rndprc); | |
extern void __toe64(short unsigned int * __restrict__ a, | |
short unsigned int * __restrict__ b); | |
extern int __edivm(short unsigned int * __restrict__ den, | |
short unsigned int * __restrict__ num); | |
extern int __emulm(const short unsigned int * __restrict__ a, | |
short unsigned int * __restrict__ b); | |
extern void __emovi(const short unsigned int * __restrict__ a, | |
short unsigned int * __restrict__ b); | |
extern void __emovo(const short unsigned int * __restrict__ a, | |
short unsigned int * __restrict__ b); | |
#if USE_LDTOA | |
extern char * _IO_ldtoa(long double, int, int, int *, int *, char **); | |
extern void _IO_ldtostr(long double *x, char *string, int ndigs, | |
int flags, char fmt); | |
extern void __eiremain(short unsigned int * __restrict__ den, | |
short unsigned int *__restrict__ num, | |
short unsigned int *__restrict__ equot); | |
extern void __efloor(short unsigned int *x, short unsigned int *y); | |
extern void __eadd1(const short unsigned int * __restrict__ a, | |
const short unsigned int * __restrict__ b, | |
short unsigned int * __restrict__ c, | |
int subflg); | |
extern void __esub(const short unsigned int *a, const short unsigned int *b, | |
short unsigned int *c); | |
extern void __ediv(const short unsigned int *a, const short unsigned int *b, | |
short unsigned int *c); | |
extern void __e64toe(short unsigned int *pe, short unsigned int *y); | |
#endif | |
static __inline__ int __eisneg(const short unsigned int *x); | |
static __inline__ int __eisinf(const short unsigned int *x); | |
static __inline__ int __eisnan(const short unsigned int *x); | |
static __inline__ int __eiszero(const short unsigned int *a); | |
static __inline__ void __emovz(register const short unsigned int * __restrict__ a, | |
register short unsigned int * __restrict__ b); | |
static __inline__ void __eclear(register short unsigned int *x); | |
static __inline__ void __ecleaz(register short unsigned int *xi); | |
static __inline__ void __ecleazs(register short unsigned int *xi); | |
static __inline__ int __eiisinf(const short unsigned int *x); | |
static __inline__ int __eiisnan(const short unsigned int *x); | |
static __inline__ int __eiiszero(const short unsigned int *x); | |
static __inline__ void __enan_64(short unsigned int *nan); | |
static __inline__ void __enan_NBITS (short unsigned int *nan); | |
static __inline__ void __enan_NI16 (short unsigned int *nan); | |
static __inline__ void __einfin(register short unsigned int *x); | |
static __inline__ void __eneg(short unsigned int *x); | |
static __inline__ void __eshup1(register short unsigned int *x); | |
static __inline__ void __eshup8(register short unsigned int *x); | |
static __inline__ void __eshup6(register short unsigned int *x); | |
static __inline__ void __eshdn1(register short unsigned int *x); | |
static __inline__ void __eshdn8(register short unsigned int *x); | |
static __inline__ void __eshdn6(register short unsigned int *x); | |
/* Intel IEEE, low order words come first: | |
*/ | |
#define IBMPC 1 | |
/* Define 1 for ANSI C atan2() function | |
* See atan.c and clog.c. | |
*/ | |
#define ANSIC 1 | |
/*define VOLATILE volatile*/ | |
#define VOLATILE | |
/* For 12-byte long doubles on an i386, pad a 16-bit short 0 | |
* to the end of real constants initialized by integer arrays. | |
* | |
* #define XPD 0, | |
* | |
* Otherwise, the type is 10 bytes long and XPD should be | |
* defined blank. | |
* | |
* #define XPD | |
*/ | |
#define XPD 0, | |
/* #define XPD */ | |
#define NANS | |
/* NaN's require infinity support. */ | |
#ifdef NANS | |
#ifndef INFINITY | |
#define INFINITY | |
#endif | |
#endif | |
/* This handles 64-bit long ints. */ | |
#define LONGBITS (8 * sizeof(long)) | |
#define NTEN 12 | |
#define MAXP 4096 | |
/* | |
; Clear out entire external format number. | |
; | |
; unsigned short x[]; | |
; eclear( x ); | |
*/ | |
static __inline__ void __eclear(register short unsigned int *x) | |
{ | |
memset(x, 0, NE * sizeof(unsigned short)); | |
} | |
/* Move external format number from a to b. | |
* | |
* emov( a, b ); | |
*/ | |
static __inline__ void __emov(register const short unsigned int * __restrict__ a, | |
register short unsigned int * __restrict__ b) | |
{ | |
memcpy(b, a, NE * sizeof(unsigned short)); | |
} | |
/* | |
; Negate external format number | |
; | |
; unsigned short x[NE]; | |
; eneg( x ); | |
*/ | |
static __inline__ void __eneg(short unsigned int *x) | |
{ | |
#ifdef NANS | |
if( __eisnan(x) ) | |
return; | |
#endif | |
x[NE-1] ^= 0x8000; /* Toggle the sign bit */ | |
} | |
/* Return 1 if external format number is negative, | |
* else return zero. | |
*/ | |
static __inline__ int __eisneg(const short unsigned int *x) | |
{ | |
#ifdef NANS | |
if( __eisnan(x) ) | |
return( 0 ); | |
#endif | |
if( x[NE-1] & 0x8000 ) | |
return( 1 ); | |
else | |
return( 0 ); | |
} | |
/* Return 1 if external format number has maximum possible exponent, | |
* else return zero. | |
*/ | |
static __inline__ int __eisinf(const short unsigned int *x) | |
{ | |
if( (x[NE-1] & 0x7fff) == 0x7fff ) | |
{ | |
#ifdef NANS | |
if( __eisnan(x) ) | |
return( 0 ); | |
#endif | |
return( 1 ); | |
} | |
else | |
return( 0 ); | |
} | |
/* Check if e-type number is not a number. | |
*/ | |
static __inline__ int __eisnan(const short unsigned int *x) | |
{ | |
#ifdef NANS | |
int i; | |
/* NaN has maximum __exponent */ | |
if( (x[NE-1] & 0x7fff) == 0x7fff ) | |
/* ... and non-zero significand field. */ | |
for( i=0; i<NE-1; i++ ) | |
{ | |
if( *x++ != 0 ) | |
return (1); | |
} | |
#endif | |
return (0); | |
} | |
/* | |
; Fill __entire number, including __exponent and significand, with | |
; largest possible number. These programs implement a saturation | |
; value that is an ordinary, legal number. A special value | |
; "infinity" may also be implemented; this would require tests | |
; for that value and implementation of special rules for arithmetic | |
; operations involving inifinity. | |
*/ | |
static __inline__ void __einfin(register short unsigned int *x) | |
{ | |
register int i; | |
#ifdef INFINITY | |
for( i=0; i<NE-1; i++ ) | |
*x++ = 0; | |
*x |= 32767; | |
#else | |
for( i=0; i<NE-1; i++ ) | |
*x++ = 0xffff; | |
*x |= 32766; | |
*(x-5) = 0; | |
#endif | |
} | |
/* Clear out internal format number. | |
*/ | |
static __inline__ void __ecleaz(register short unsigned int *xi) | |
{ | |
memset(xi, 0, NI * sizeof(unsigned short)); | |
} | |
/* same, but don't touch the sign. */ | |
static __inline__ void __ecleazs(register short unsigned int *xi) | |
{ | |
++xi; | |
memset(xi, 0, (NI-1) * sizeof(unsigned short)); | |
} | |
/* Move internal format number from a to b. | |
*/ | |
static __inline__ void __emovz(register const short unsigned int * __restrict__ a, | |
register short unsigned int * __restrict__ b) | |
{ | |
memcpy(b, a, (NI-1) * sizeof(unsigned short)); | |
b[NI-1]=0; | |
} | |
/* Return nonzero if internal format number is a NaN. | |
*/ | |
static __inline__ int __eiisnan (const short unsigned int *x) | |
{ | |
int i; | |
if( (x[E] & 0x7fff) == 0x7fff ) | |
{ | |
for( i=M+1; i<NI; i++ ) | |
{ | |
if( x[i] != 0 ) | |
return(1); | |
} | |
} | |
return(0); | |
} | |
/* Return nonzero if external format number is zero. */ | |
static __inline__ int | |
__eiszero(const short unsigned int * a) | |
{ | |
if (*((long double*) a) == 0) | |
return (1); | |
return (0); | |
} | |
/* Return nonzero if internal format number is zero. */ | |
static __inline__ int | |
__eiiszero(const short unsigned int * ai) | |
{ | |
int i; | |
/* skip the sign word */ | |
for( i=1; i<NI-1; i++ ) | |
{ | |
if( ai[i] != 0 ) | |
return (0); | |
} | |
return (1); | |
} | |
/* Return nonzero if internal format number is infinite. */ | |
static __inline__ int | |
__eiisinf (const unsigned short *x) | |
{ | |
#ifdef NANS | |
if (__eiisnan (x)) | |
return (0); | |
#endif | |
if ((x[E] & 0x7fff) == 0x7fff) | |
return (1); | |
return (0); | |
} | |
/* | |
; Compare significands of numbers in internal format. | |
; Guard words are included in the comparison. | |
; | |
; unsigned short a[NI], b[NI]; | |
; cmpm( a, b ); | |
; | |
; for the significands: | |
; returns +1 if a > b | |
; 0 if a == b | |
; -1 if a < b | |
*/ | |
static __inline__ int __ecmpm(register const short unsigned int * __restrict__ a, | |
register const short unsigned int * __restrict__ b) | |
{ | |
int i; | |
a += M; /* skip up to significand area */ | |
b += M; | |
for( i=M; i<NI; i++ ) | |
{ | |
if( *a++ != *b++ ) | |
goto difrnt; | |
} | |
return(0); | |
difrnt: | |
if( *(--a) > *(--b) ) | |
return(1); | |
else | |
return(-1); | |
} | |
/* | |
; Shift significand down by 1 bit | |
*/ | |
static __inline__ void __eshdn1(register short unsigned int *x) | |
{ | |
register unsigned short bits; | |
int i; | |
x += M; /* point to significand area */ | |
bits = 0; | |
for( i=M; i<NI; i++ ) | |
{ | |
if( *x & 1 ) | |
bits |= 1; | |
*x >>= 1; | |
if( bits & 2 ) | |
*x |= 0x8000; | |
bits <<= 1; | |
++x; | |
} | |
} | |
/* | |
; Shift significand up by 1 bit | |
*/ | |
static __inline__ void __eshup1(register short unsigned int *x) | |
{ | |
register unsigned short bits; | |
int i; | |
x += NI-1; | |
bits = 0; | |
for( i=M; i<NI; i++ ) | |
{ | |
if( *x & 0x8000 ) | |
bits |= 1; | |
*x <<= 1; | |
if( bits & 2 ) | |
*x |= 1; | |
bits <<= 1; | |
--x; | |
} | |
} | |
/* | |
; Shift significand down by 8 bits | |
*/ | |
static __inline__ void __eshdn8(register short unsigned int *x) | |
{ | |
register unsigned short newbyt, oldbyt; | |
int i; | |
x += M; | |
oldbyt = 0; | |
for( i=M; i<NI; i++ ) | |
{ | |
newbyt = *x << 8; | |
*x >>= 8; | |
*x |= oldbyt; | |
oldbyt = newbyt; | |
++x; | |
} | |
} | |
/* | |
; Shift significand up by 8 bits | |
*/ | |
static __inline__ void __eshup8(register short unsigned int *x) | |
{ | |
int i; | |
register unsigned short newbyt, oldbyt; | |
x += NI-1; | |
oldbyt = 0; | |
for( i=M; i<NI; i++ ) | |
{ | |
newbyt = *x >> 8; | |
*x <<= 8; | |
*x |= oldbyt; | |
oldbyt = newbyt; | |
--x; | |
} | |
} | |
/* | |
; Shift significand up by 16 bits | |
*/ | |
static __inline__ void __eshup6(register short unsigned int *x) | |
{ | |
int i; | |
register unsigned short *p; | |
p = x + M; | |
x += M + 1; | |
for( i=M; i<NI-1; i++ ) | |
*p++ = *x++; | |
*p = 0; | |
} | |
/* | |
; Shift significand down by 16 bits | |
*/ | |
static __inline__ void __eshdn6(register short unsigned int *x) | |
{ | |
int i; | |
register unsigned short *p; | |
x += NI-1; | |
p = x + 1; | |
for( i=M; i<NI-1; i++ ) | |
*(--p) = *(--x); | |
*(--p) = 0; | |
} | |
/* | |
; Add significands | |
; x + y replaces y | |
*/ | |
static __inline__ void __enan_64(unsigned short* nan) | |
{ | |
int i; | |
for( i=0; i<3; i++ ) | |
*nan++ = 0; | |
*nan++ = 0xc000; | |
*nan++ = 0x7fff; | |
*nan = 0; | |
return; | |
} | |
static __inline__ void __enan_NBITS(unsigned short* nan) | |
{ | |
int i; | |
for( i=0; i<NE-2; i++ ) | |
*nan++ = 0; | |
*nan++ = 0xc000; | |
*nan = 0x7fff; | |
return; | |
} | |
static __inline__ void __enan_NI16(unsigned short* nan) | |
{ | |
int i; | |
*nan++ = 0; | |
*nan++ = 0x7fff; | |
*nan++ = 0; | |
*nan++ = 0xc000; | |
for( i=4; i<NI; i++ ) | |
*nan++ = 0; | |
return; | |
} | |
#endif /* _CEPHES_EMATH_H */ | |