| /**************************************************************** |
| |
| The author of this software is David M. Gay. |
| |
| Copyright (C) 1998, 1999 by Lucent Technologies |
| All Rights Reserved |
| |
| Permission to use, copy, modify, and distribute this software and |
| its documentation for any purpose and without fee is hereby |
| granted, provided that the above copyright notice appear in all |
| copies and that both that the copyright notice and this |
| permission notice and warranty disclaimer appear in supporting |
| documentation, and that the name of Lucent or any of its entities |
| not be used in advertising or publicity pertaining to |
| distribution of the software without specific, written prior |
| permission. |
| |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF |
| THIS SOFTWARE. |
| |
| ****************************************************************/ |
| |
| /* Please send bug reports to David M. Gay (dmg at acm dot org, |
| * with " at " changed at "@" and " dot " changed to "."). */ |
| |
| #include "gdtoaimp.h" |
| |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| * |
| * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| * |
| * Modifications: |
| * 1. Rather than iterating, we use a simple numeric overestimate |
| * to determine k = floor(log10(d)). We scale relevant |
| * quantities using O(log2(k)) rather than O(k) multiplications. |
| * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| * try to generate digits strictly left to right. Instead, we |
| * compute with fewer bits and propagate the carry if necessary |
| * when rounding the final digit up. This is often faster. |
| * 3. Under the assumption that input will be rounded nearest, |
| * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| * That is, we allow equality in stopping tests when the |
| * round-nearest rule will give the same floating-point value |
| * as would satisfaction of the stopping test with strict |
| * inequality. |
| * 4. We remove common factors of powers of 2 from relevant |
| * quantities. |
| * 5. When converting floating-point integers less than 1e16, |
| * we use floating-point arithmetic rather than resorting |
| * to multiple-precision integers. |
| * 6. When asked to produce fewer than 15 digits, we first try |
| * to get by with floating-point arithmetic; we resort to |
| * multiple-precision integer arithmetic only if we cannot |
| * guarantee that the floating-point calculation has given |
| * the correctly rounded result. For k requested digits and |
| * "uniformly" distributed input, the probability is |
| * something like 10^(k-15) that we must resort to the Long |
| * calculation. |
| */ |
| |
| #ifdef Honor_FLT_ROUNDS |
| #undef Check_FLT_ROUNDS |
| #define Check_FLT_ROUNDS |
| #else |
| #define Rounding Flt_Rounds |
| #endif |
| |
| char *__dtoa (double d0, int mode, int ndigits, int *decpt, int *sign, char **rve) |
| { |
| /* Arguments ndigits, decpt, sign are similar to those |
| of ecvt and fcvt; trailing zeros are suppressed from |
| the returned string. If not null, *rve is set to point |
| to the end of the return value. If d is +-Infinity or NaN, |
| then *decpt is set to 9999. |
| |
| mode: |
| 0 ==> shortest string that yields d when read in |
| and rounded to nearest. |
| 1 ==> like 0, but with Steele & White stopping rule; |
| e.g. with IEEE P754 arithmetic , mode 0 gives |
| 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2 ==> max(1,ndigits) significant digits. This gives a |
| return value similar to that of ecvt, except |
| that trailing zeros are suppressed. |
| 3 ==> through ndigits past the decimal point. This |
| gives a return value similar to that from fcvt, |
| except that trailing zeros are suppressed, and |
| ndigits can be negative. |
| 4,5 ==> similar to 2 and 3, respectively, but (in |
| round-nearest mode) with the tests of mode 0 to |
| possibly return a shorter string that rounds to d. |
| With IEEE arithmetic and compilation with |
| -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| as modes 2 and 3 when FLT_ROUNDS != 1. |
| 6-9 ==> Debugging modes similar to mode - 4: don't try |
| fast floating-point estimate (if applicable). |
| |
| Values of mode other than 0-9 are treated as mode 0. |
| |
| Sufficient space is allocated to the return value |
| to hold the suppressed trailing zeros. |
| */ |
| |
| int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
| j, j2, k, k0, k_check, leftright, m2, m5, s2, s5, |
| spec_case, try_quick; |
| Long L; |
| #ifndef Sudden_Underflow |
| int denorm; |
| ULong x; |
| #endif |
| Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| union _dbl_union d, d2, eps; |
| double ds; |
| char *s, *s0; |
| #ifdef SET_INEXACT |
| int inexact, oldinexact; |
| #endif |
| #ifdef Honor_FLT_ROUNDS /*{*/ |
| int Rounding; |
| #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ |
| Rounding = Flt_Rounds; |
| #else /*}{*/ |
| Rounding = 1; |
| switch(fegetround()) { |
| case FE_TOWARDZERO: Rounding = 0; break; |
| case FE_UPWARD: Rounding = 2; break; |
| case FE_DOWNWARD: Rounding = 3; |
| } |
| #endif /*}}*/ |
| #endif /*}*/ |
| |
| #ifndef MULTIPLE_THREADS |
| if (dtoa_result) { |
| __freedtoa(dtoa_result); |
| dtoa_result = 0; |
| } |
| #endif |
| d.d = d0; |
| if (word0(&d) & Sign_bit) { |
| /* set sign for everything, including 0's and NaNs */ |
| *sign = 1; |
| word0(&d) &= ~Sign_bit; /* clear sign bit */ |
| } |
| else |
| *sign = 0; |
| |
| if ((word0(&d) & Exp_mask) == Exp_mask) |
| { |
| /* Infinity or NaN */ |
| *decpt = 9999; |
| if (!word1(&d) && !(word0(&d) & 0xfffff)) |
| return nrv_alloc("Infinity", rve, 8); |
| return nrv_alloc("NaN", rve, 3); |
| } |
| if (!dval(&d)) { |
| *decpt = 1; |
| return nrv_alloc("0", rve, 1); |
| } |
| |
| #ifdef SET_INEXACT |
| try_quick = oldinexact = get_inexact(); |
| inexact = 1; |
| #endif |
| #ifdef Honor_FLT_ROUNDS |
| if (Rounding >= 2) { |
| if (*sign) |
| Rounding = Rounding == 2 ? 0 : 2; |
| else |
| if (Rounding != 2) |
| Rounding = 0; |
| } |
| #endif |
| |
| b = d2b(dval(&d), &be, &bbits); |
| #ifdef Sudden_Underflow |
| i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); |
| #else |
| if (( i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) { |
| #endif |
| dval(&d2) = dval(&d); |
| word0(&d2) &= Frac_mask1; |
| word0(&d2) |= Exp_11; |
| |
| /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| * log10(x) = log(x) / log(10) |
| * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| * log10(&d) = (i-Bias)*log(2)/log(10) + log10(&d2) |
| * |
| * This suggests computing an approximation k to log10(&d) by |
| * |
| * k = (i - Bias)*0.301029995663981 |
| * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| * |
| * We want k to be too large rather than too small. |
| * The error in the first-order Taylor series approximation |
| * is in our favor, so we just round up the constant enough |
| * to compensate for any error in the multiplication of |
| * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| * adding 1e-13 to the constant term more than suffices. |
| * Hence we adjust the constant term to 0.1760912590558. |
| * (We could get a more accurate k by invoking log10, |
| * but this is probably not worthwhile.) |
| */ |
| |
| i -= Bias; |
| #ifndef Sudden_Underflow |
| denorm = 0; |
| } |
| else { |
| /* d is denormalized */ |
| |
| i = bbits + be + (Bias + (P-1) - 1); |
| x = i > 32 ? word0(&d) << (64 - i) | word1(&d) >> (i - 32) |
| : word1(&d) << (32 - i); |
| dval(&d2) = x; |
| word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
| i -= (Bias + (P-1) - 1) + 1; |
| denorm = 1; |
| } |
| #endif |
| ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
| k = (int)ds; |
| if (ds < 0. && ds != k) |
| k--; /* want k = floor(ds) */ |
| k_check = 1; |
| if (k >= 0 && k <= Ten_pmax) { |
| if (dval(&d) < tens[k]) |
| k--; |
| k_check = 0; |
| } |
| j = bbits - i - 1; |
| if (j >= 0) { |
| b2 = 0; |
| s2 = j; |
| } |
| else { |
| b2 = -j; |
| s2 = 0; |
| } |
| if (k >= 0) { |
| b5 = 0; |
| s5 = k; |
| s2 += k; |
| } |
| else { |
| b2 -= k; |
| b5 = -k; |
| s5 = 0; |
| } |
| if (mode < 0 || mode > 9) |
| mode = 0; |
| |
| #ifndef SET_INEXACT |
| #ifdef Check_FLT_ROUNDS |
| try_quick = Rounding == 1; |
| #else |
| try_quick = 1; |
| #endif |
| #endif /*SET_INEXACT*/ |
| |
| if (mode > 5) { |
| mode -= 4; |
| try_quick = 0; |
| } |
| leftright = 1; |
| ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
| /* silence erroneous "gcc -Wall" warning. */ |
| switch(mode) { |
| case 0: |
| case 1: |
| i = 18; |
| ndigits = 0; |
| break; |
| case 2: |
| leftright = 0; |
| /* no break */ |
| case 4: |
| if (ndigits <= 0) |
| ndigits = 1; |
| ilim = ilim1 = i = ndigits; |
| break; |
| case 3: |
| leftright = 0; |
| /* no break */ |
| case 5: |
| i = ndigits + k + 1; |
| ilim = i; |
| ilim1 = i - 1; |
| if (i <= 0) |
| i = 1; |
| } |
| s = s0 = rv_alloc(i); |
| |
| #ifdef Honor_FLT_ROUNDS |
| if (mode > 1 && Rounding != 1) |
| leftright = 0; |
| #endif |
| |
| if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
| |
| /* Try to get by with floating-point arithmetic. */ |
| |
| i = 0; |
| dval(&d2) = dval(&d); |
| k0 = k; |
| ilim0 = ilim; |
| ieps = 2; /* conservative */ |
| if (k > 0) { |
| ds = tens[k&0xf]; |
| j = k >> 4; |
| if (j & Bletch) { |
| /* prevent overflows */ |
| j &= Bletch - 1; |
| dval(&d) /= bigtens[n_bigtens-1]; |
| ieps++; |
| } |
| for(; j; j >>= 1, i++) |
| if (j & 1) { |
| ieps++; |
| ds *= bigtens[i]; |
| } |
| dval(&d) /= ds; |
| } |
| else if (( j2 = -k )!=0) { |
| dval(&d) *= tens[j2 & 0xf]; |
| for(j = j2 >> 4; j; j >>= 1, i++) |
| if (j & 1) { |
| ieps++; |
| dval(&d) *= bigtens[i]; |
| } |
| } |
| if (k_check && dval(&d) < 1. && ilim > 0) { |
| if (ilim1 <= 0) |
| goto fast_failed; |
| ilim = ilim1; |
| k--; |
| dval(&d) *= 10.; |
| ieps++; |
| } |
| dval(&eps) = ieps*dval(&d) + 7.; |
| word0(&eps) -= (P-1)*Exp_msk1; |
| if (ilim == 0) { |
| S = mhi = 0; |
| dval(&d) -= 5.; |
| if (dval(&d) > dval(&eps)) |
| goto one_digit; |
| if (dval(&d) < -dval(&eps)) |
| goto no_digits; |
| goto fast_failed; |
| } |
| #ifndef No_leftright |
| if (leftright) { |
| /* Use Steele & White method of only |
| * generating digits needed. |
| */ |
| dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
| for(i = 0;;) { |
| L = dval(&d); |
| dval(&d) -= L; |
| *s++ = '0' + (int)L; |
| if (dval(&d) < dval(&eps)) |
| goto ret1; |
| if (1. - dval(&d) < dval(&eps)) |
| goto bump_up; |
| if (++i >= ilim) |
| break; |
| dval(&eps) *= 10.; |
| dval(&d) *= 10.; |
| } |
| } |
| else { |
| #endif |
| /* Generate ilim digits, then fix them up. */ |
| dval(&eps) *= tens[ilim-1]; |
| for(i = 1;; i++, dval(&d) *= 10.) { |
| L = (Long)(dval(&d)); |
| if (!(dval(&d) -= L)) |
| ilim = i; |
| *s++ = '0' + (int)L; |
| if (i == ilim) { |
| if (dval(&d) > 0.5 + dval(&eps)) |
| goto bump_up; |
| else if (dval(&d) < 0.5 - dval(&eps)) { |
| while(*--s == '0'); |
| s++; |
| goto ret1; |
| } |
| break; |
| } |
| } |
| #ifndef No_leftright |
| } |
| #endif |
| fast_failed: |
| s = s0; |
| dval(&d) = dval(&d2); |
| k = k0; |
| ilim = ilim0; |
| } |
| |
| /* Do we have a "small" integer? */ |
| |
| if (be >= 0 && k <= Int_max) { |
| /* Yes. */ |
| ds = tens[k]; |
| if (ndigits < 0 && ilim <= 0) { |
| S = mhi = 0; |
| if (ilim < 0 || dval(&d) <= 5*ds) |
| goto no_digits; |
| goto one_digit; |
| } |
| for(i = 1;; i++, dval(&d) *= 10.) { |
| L = (Long)(dval(&d) / ds); |
| dval(&d) -= L*ds; |
| #ifdef Check_FLT_ROUNDS |
| /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
| if (dval(&d) < 0) { |
| L--; |
| dval(&d) += ds; |
| } |
| #endif |
| *s++ = '0' + (int)L; |
| if (!dval(&d)) { |
| #ifdef SET_INEXACT |
| inexact = 0; |
| #endif |
| break; |
| } |
| if (i == ilim) { |
| #ifdef Honor_FLT_ROUNDS |
| if (mode > 1) |
| switch(Rounding) { |
| case 0: goto ret1; |
| case 2: goto bump_up; |
| } |
| #endif |
| dval(&d) += dval(&d); |
| #ifdef ROUND_BIASED |
| if (dval(&d) >= ds) |
| #else |
| if (dval(&d) > ds || (dval(&d) == ds && L & 1)) |
| #endif |
| { |
| bump_up: |
| while(*--s == '9') |
| if (s == s0) { |
| k++; |
| *s = '0'; |
| break; |
| } |
| ++*s++; |
| } |
| break; |
| } |
| } |
| goto ret1; |
| } |
| |
| m2 = b2; |
| m5 = b5; |
| mhi = mlo = 0; |
| if (leftright) { |
| i = |
| #ifndef Sudden_Underflow |
| denorm ? be + (Bias + (P-1) - 1 + 1) : |
| #endif |
| 1 + P - bbits; |
| b2 += i; |
| s2 += i; |
| mhi = i2b(1); |
| } |
| if (m2 > 0 && s2 > 0) { |
| i = m2 < s2 ? m2 : s2; |
| b2 -= i; |
| m2 -= i; |
| s2 -= i; |
| } |
| if (b5 > 0) { |
| if (leftright) { |
| if (m5 > 0) { |
| mhi = pow5mult(mhi, m5); |
| b1 = mult(mhi, b); |
| Bfree(b); |
| b = b1; |
| } |
| if (( j = b5 - m5 )!=0) |
| b = pow5mult(b, j); |
| } |
| else |
| b = pow5mult(b, b5); |
| } |
| S = i2b(1); |
| if (s5 > 0) |
| S = pow5mult(S, s5); |
| |
| /* Check for special case that d is a normalized power of 2. */ |
| |
| spec_case = 0; |
| if ((mode < 2 || leftright) |
| #ifdef Honor_FLT_ROUNDS |
| && Rounding == 1 |
| #endif |
| ) { |
| if (!word1(&d) && !(word0(&d) & Bndry_mask) |
| #ifndef Sudden_Underflow |
| && word0(&d) & (Exp_mask & ~Exp_msk1) |
| #endif |
| ) { |
| /* The special case */ |
| b2 += Log2P; |
| s2 += Log2P; |
| spec_case = 1; |
| } |
| } |
| |
| /* Arrange for convenient computation of quotients: |
| * shift left if necessary so divisor has 4 leading 0 bits. |
| * |
| * Perhaps we should just compute leading 28 bits of S once |
| * and for all and pass them and a shift to quorem, so it |
| * can do shifts and ors to compute the numerator for q. |
| */ |
| #ifdef Pack_32 |
| if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0) |
| i = 32 - i; |
| #else |
| if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0) |
| i = 16 - i; |
| #endif |
| if (i > 4) { |
| i -= 4; |
| b2 += i; |
| m2 += i; |
| s2 += i; |
| } |
| else if (i < 4) { |
| i += 28; |
| b2 += i; |
| m2 += i; |
| s2 += i; |
| } |
| if (b2 > 0) |
| b = lshift(b, b2); |
| if (s2 > 0) |
| S = lshift(S, s2); |
| if (k_check) { |
| if (cmp(b,S) < 0) { |
| k--; |
| b = multadd(b, 10, 0); /* we botched the k estimate */ |
| if (leftright) |
| mhi = multadd(mhi, 10, 0); |
| ilim = ilim1; |
| } |
| } |
| if (ilim <= 0 && (mode == 3 || mode == 5)) { |
| if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { |
| /* no digits, fcvt style */ |
| no_digits: |
| k = -1 - ndigits; |
| goto ret; |
| } |
| one_digit: |
| *s++ = '1'; |
| k++; |
| goto ret; |
| } |
| if (leftright) { |
| if (m2 > 0) |
| mhi = lshift(mhi, m2); |
| |
| /* Compute mlo -- check for special case |
| * that d is a normalized power of 2. |
| */ |
| |
| mlo = mhi; |
| if (spec_case) { |
| mhi = Balloc(mhi->k); |
| Bcopy(mhi, mlo); |
| mhi = lshift(mhi, Log2P); |
| } |
| |
| for(i = 1;;i++) { |
| dig = quorem(b,S) + '0'; |
| /* Do we yet have the shortest decimal string |
| * that will round to d? |
| */ |
| j = cmp(b, mlo); |
| delta = diff(S, mhi); |
| j2 = delta->sign ? 1 : cmp(b, delta); |
| Bfree(delta); |
| #ifndef ROUND_BIASED |
| if (j2 == 0 && mode != 1 && !(word1(&d) & 1) |
| #ifdef Honor_FLT_ROUNDS |
| && Rounding >= 1 |
| #endif |
| ) { |
| if (dig == '9') |
| goto round_9_up; |
| if (j > 0) |
| dig++; |
| #ifdef SET_INEXACT |
| else if (!b->x[0] && b->wds <= 1) |
| inexact = 0; |
| #endif |
| *s++ = dig; |
| goto ret; |
| } |
| #endif |
| if (j < 0 || (j == 0 && mode != 1 |
| #ifndef ROUND_BIASED |
| && !(word1(&d) & 1) |
| #endif |
| )) { |
| if (!b->x[0] && b->wds <= 1) { |
| #ifdef SET_INEXACT |
| inexact = 0; |
| #endif |
| goto accept_dig; |
| } |
| #ifdef Honor_FLT_ROUNDS |
| if (mode > 1) |
| switch(Rounding) { |
| case 0: goto accept_dig; |
| case 2: goto keep_dig; |
| } |
| #endif /*Honor_FLT_ROUNDS*/ |
| if (j2 > 0) { |
| b = lshift(b, 1); |
| j2 = cmp(b, S); |
| #ifdef ROUND_BIASED |
| if (j2 >= 0 /*)*/ |
| #else |
| if ((j2 > 0 || (j2 == 0 && dig & 1)) |
| #endif |
| && dig++ == '9') |
| goto round_9_up; |
| } |
| accept_dig: |
| *s++ = dig; |
| goto ret; |
| } |
| if (j2 > 0) { |
| #ifdef Honor_FLT_ROUNDS |
| if (!Rounding) |
| goto accept_dig; |
| #endif |
| if (dig == '9') { /* possible if i == 1 */ |
| round_9_up: |
| *s++ = '9'; |
| goto roundoff; |
| } |
| *s++ = dig + 1; |
| goto ret; |
| } |
| #ifdef Honor_FLT_ROUNDS |
| keep_dig: |
| #endif |
| *s++ = dig; |
| if (i == ilim) |
| break; |
| b = multadd(b, 10, 0); |
| if (mlo == mhi) |
| mlo = mhi = multadd(mhi, 10, 0); |
| else { |
| mlo = multadd(mlo, 10, 0); |
| mhi = multadd(mhi, 10, 0); |
| } |
| } |
| } |
| else |
| for(i = 1;; i++) { |
| *s++ = dig = quorem(b,S) + '0'; |
| if (!b->x[0] && b->wds <= 1) { |
| #ifdef SET_INEXACT |
| inexact = 0; |
| #endif |
| goto ret; |
| } |
| if (i >= ilim) |
| break; |
| b = multadd(b, 10, 0); |
| } |
| |
| /* Round off last digit */ |
| |
| #ifdef Honor_FLT_ROUNDS |
| switch(Rounding) { |
| case 0: goto trimzeros; |
| case 2: goto roundoff; |
| } |
| #endif |
| b = lshift(b, 1); |
| j = cmp(b, S); |
| #ifdef ROUND_BIASED |
| if (j >= 0) |
| #else |
| if (j > 0 || (j == 0 && dig & 1)) |
| #endif |
| { |
| roundoff: |
| while(*--s == '9') |
| if (s == s0) { |
| k++; |
| *s++ = '1'; |
| goto ret; |
| } |
| ++*s++; |
| } |
| else { |
| #ifdef Honor_FLT_ROUNDS |
| trimzeros: |
| #endif |
| while(*--s == '0'); |
| s++; |
| } |
| ret: |
| Bfree(S); |
| if (mhi) { |
| if (mlo && mlo != mhi) |
| Bfree(mlo); |
| Bfree(mhi); |
| } |
| ret1: |
| #ifdef SET_INEXACT |
| if (inexact) { |
| if (!oldinexact) { |
| word0(&d) = Exp_1 + (70 << Exp_shift); |
| word1(&d) = 0; |
| dval(&d) += 1.; |
| } |
| } |
| else if (!oldinexact) |
| clear_inexact(); |
| #endif |
| Bfree(b); |
| *s = 0; |
| *decpt = k + 1; |
| if (rve) |
| *rve = s; |
| return s0; |
| } |