| /**************************************************************** |
| |
| The author of this software is David M. Gay. |
| |
| Copyright (C) 1998, 1999 by Lucent Technologies |
| All Rights Reserved |
| |
| Permission to use, copy, modify, and distribute this software and |
| its documentation for any purpose and without fee is hereby |
| granted, provided that the above copyright notice appear in all |
| copies and that both that the copyright notice and this |
| permission notice and warranty disclaimer appear in supporting |
| documentation, and that the name of Lucent or any of its entities |
| not be used in advertising or publicity pertaining to |
| distribution of the software without specific, written prior |
| permission. |
| |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF |
| THIS SOFTWARE. |
| |
| ****************************************************************/ |
| |
| /* Please send bug reports to David M. Gay (dmg at acm dot org, |
| * with " at " changed at "@" and " dot " changed to "."). */ |
| |
| #include "gdtoaimp.h" |
| |
| static Bigint *bitstob (ULong *bits, int nbits, int *bbits) |
| { |
| int i, k; |
| Bigint *b; |
| ULong *be, *x, *x0; |
| |
| i = ULbits; |
| k = 0; |
| while(i < nbits) { |
| i <<= 1; |
| k++; |
| } |
| #ifndef Pack_32 |
| if (!k) |
| k = 1; |
| #endif |
| b = Balloc(k); |
| be = bits + ((nbits - 1) >> kshift); |
| x = x0 = b->x; |
| do { |
| *x++ = *bits & ALL_ON; |
| #ifdef Pack_16 |
| *x++ = (*bits >> 16) & ALL_ON; |
| #endif |
| } while(++bits <= be); |
| i = x - x0; |
| while(!x0[--i]) |
| if (!i) { |
| b->wds = 0; |
| *bbits = 0; |
| goto ret; |
| } |
| b->wds = i + 1; |
| *bbits = i*ULbits + 32 - hi0bits(b->x[i]); |
| ret: |
| return b; |
| } |
| |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| * |
| * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| * |
| * Modifications: |
| * 1. Rather than iterating, we use a simple numeric overestimate |
| * to determine k = floor(log10(d)). We scale relevant |
| * quantities using O(log2(k)) rather than O(k) multiplications. |
| * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| * try to generate digits strictly left to right. Instead, we |
| * compute with fewer bits and propagate the carry if necessary |
| * when rounding the final digit up. This is often faster. |
| * 3. Under the assumption that input will be rounded nearest, |
| * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| * That is, we allow equality in stopping tests when the |
| * round-nearest rule will give the same floating-point value |
| * as would satisfaction of the stopping test with strict |
| * inequality. |
| * 4. We remove common factors of powers of 2 from relevant |
| * quantities. |
| * 5. When converting floating-point integers less than 1e16, |
| * we use floating-point arithmetic rather than resorting |
| * to multiple-precision integers. |
| * 6. When asked to produce fewer than 15 digits, we first try |
| * to get by with floating-point arithmetic; we resort to |
| * multiple-precision integer arithmetic only if we cannot |
| * guarantee that the floating-point calculation has given |
| * the correctly rounded result. For k requested digits and |
| * "uniformly" distributed input, the probability is |
| * something like 10^(k-15) that we must resort to the Long |
| * calculation. |
| */ |
| |
| char *__gdtoa (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, |
| int *decpt, char **rve) |
| { |
| /* Arguments ndigits and decpt are similar to the second and third |
| arguments of ecvt and fcvt; trailing zeros are suppressed from |
| the returned string. If not null, *rve is set to point |
| to the end of the return value. If d is +-Infinity or NaN, |
| then *decpt is set to 9999. |
| be = exponent: value = (integer represented by bits) * (2 to the power of be). |
| |
| mode: |
| 0 ==> shortest string that yields d when read in |
| and rounded to nearest. |
| 1 ==> like 0, but with Steele & White stopping rule; |
| e.g. with IEEE P754 arithmetic , mode 0 gives |
| 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2 ==> max(1,ndigits) significant digits. This gives a |
| return value similar to that of ecvt, except |
| that trailing zeros are suppressed. |
| 3 ==> through ndigits past the decimal point. This |
| gives a return value similar to that from fcvt, |
| except that trailing zeros are suppressed, and |
| ndigits can be negative. |
| 4-9 should give the same return values as 2-3, i.e., |
| 4 <= mode <= 9 ==> same return as mode |
| 2 + (mode & 1). These modes are mainly for |
| debugging; often they run slower but sometimes |
| faster than modes 2-3. |
| 4,5,8,9 ==> left-to-right digit generation. |
| 6-9 ==> don't try fast floating-point estimate |
| (if applicable). |
| |
| Values of mode other than 0-9 are treated as mode 0. |
| |
| Sufficient space is allocated to the return value |
| to hold the suppressed trailing zeros. |
| */ |
| |
| int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex; |
| int j, j2, k, k0, k_check, kind, leftright, m2, m5, nbits; |
| int rdir, s2, s5, spec_case, try_quick; |
| Long L; |
| Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S; |
| double d2, ds; |
| char *s, *s0; |
| union _dbl_union d, eps; |
| |
| #ifndef MULTIPLE_THREADS |
| if (dtoa_result) { |
| __freedtoa(dtoa_result); |
| dtoa_result = 0; |
| } |
| #endif |
| inex = 0; |
| kind = *kindp &= ~STRTOG_Inexact; |
| switch(kind & STRTOG_Retmask) { |
| case STRTOG_Zero: |
| goto ret_zero; |
| case STRTOG_Normal: |
| case STRTOG_Denormal: |
| break; |
| case STRTOG_Infinite: |
| *decpt = -32768; |
| return nrv_alloc("Infinity", rve, 8); |
| case STRTOG_NaN: |
| *decpt = -32768; |
| return nrv_alloc("NaN", rve, 3); |
| default: |
| return 0; |
| } |
| b = bitstob(bits, nbits = fpi->nbits, &bbits); |
| be0 = be; |
| if ( (i = trailz(b)) !=0) { |
| rshift(b, i); |
| be += i; |
| bbits -= i; |
| } |
| if (!b->wds) { |
| Bfree(b); |
| ret_zero: |
| *decpt = 1; |
| return nrv_alloc("0", rve, 1); |
| } |
| |
| dval(&d) = b2d(b, &i); |
| i = be + bbits - 1; |
| word0(&d) &= Frac_mask1; |
| word0(&d) |= Exp_11; |
| |
| /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| * log10(x) = log(x) / log(10) |
| * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2) |
| * |
| * This suggests computing an approximation k to log10(&d) by |
| * |
| * k = (i - Bias)*0.301029995663981 |
| * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| * |
| * We want k to be too large rather than too small. |
| * The error in the first-order Taylor series approximation |
| * is in our favor, so we just round up the constant enough |
| * to compensate for any error in the multiplication of |
| * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| * adding 1e-13 to the constant term more than suffices. |
| * Hence we adjust the constant term to 0.1760912590558. |
| * (We could get a more accurate k by invoking log10, |
| * but this is probably not worthwhile.) |
| */ |
| ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
| |
| /* correct assumption about exponent range */ |
| if ((j = i) < 0) |
| j = -j; |
| if ((j -= 1077) > 0) |
| ds += j * 7e-17; |
| |
| k = (int)ds; |
| if (ds < 0. && ds != k) |
| k--; /* want k = floor(ds) */ |
| k_check = 1; |
| word0(&d) += (be + bbits - 1) << Exp_shift; |
| if (k >= 0 && k <= Ten_pmax) { |
| if (dval(&d) < tens[k]) |
| k--; |
| k_check = 0; |
| } |
| j = bbits - i - 1; |
| if (j >= 0) { |
| b2 = 0; |
| s2 = j; |
| } |
| else { |
| b2 = -j; |
| s2 = 0; |
| } |
| if (k >= 0) { |
| b5 = 0; |
| s5 = k; |
| s2 += k; |
| } |
| else { |
| b2 -= k; |
| b5 = -k; |
| s5 = 0; |
| } |
| if (mode < 0 || mode > 9) |
| mode = 0; |
| try_quick = 1; |
| if (mode > 5) { |
| mode -= 4; |
| try_quick = 0; |
| } |
| else if (i >= -4 - Emin || i < Emin) |
| try_quick = 0; |
| leftright = 1; |
| ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
| /* silence erroneous "gcc -Wall" warning. */ |
| switch(mode) { |
| case 0: |
| case 1: |
| i = (int)(nbits * .30103) + 3; |
| ndigits = 0; |
| break; |
| case 2: |
| leftright = 0; |
| /* no break */ |
| case 4: |
| if (ndigits <= 0) |
| ndigits = 1; |
| ilim = ilim1 = i = ndigits; |
| break; |
| case 3: |
| leftright = 0; |
| /* no break */ |
| case 5: |
| i = ndigits + k + 1; |
| ilim = i; |
| ilim1 = i - 1; |
| if (i <= 0) |
| i = 1; |
| } |
| s = s0 = rv_alloc(i); |
| |
| if ( (rdir = fpi->rounding - 1) !=0) { |
| if (rdir < 0) |
| rdir = 2; |
| if (kind & STRTOG_Neg) |
| rdir = 3 - rdir; |
| } |
| |
| /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */ |
| |
| if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir |
| #ifndef IMPRECISE_INEXACT |
| && k == 0 |
| #endif |
| ) { |
| |
| /* Try to get by with floating-point arithmetic. */ |
| |
| i = 0; |
| d2 = dval(&d); |
| k0 = k; |
| ilim0 = ilim; |
| ieps = 2; /* conservative */ |
| if (k > 0) { |
| ds = tens[k&0xf]; |
| j = k >> 4; |
| if (j & Bletch) { |
| /* prevent overflows */ |
| j &= Bletch - 1; |
| dval(&d) /= bigtens[n_bigtens-1]; |
| ieps++; |
| } |
| for(; j; j >>= 1, i++) |
| if (j & 1) { |
| ieps++; |
| ds *= bigtens[i]; |
| } |
| } |
| else { |
| ds = 1.; |
| if ( (j2 = -k) !=0) { |
| dval(&d) *= tens[j2 & 0xf]; |
| for(j = j2 >> 4; j; j >>= 1, i++) |
| if (j & 1) { |
| ieps++; |
| dval(&d) *= bigtens[i]; |
| } |
| } |
| } |
| if (k_check && dval(&d) < 1. && ilim > 0) { |
| if (ilim1 <= 0) |
| goto fast_failed; |
| ilim = ilim1; |
| k--; |
| dval(&d) *= 10.; |
| ieps++; |
| } |
| dval(&eps) = ieps*dval(&d) + 7.; |
| word0(&eps) -= (P-1)*Exp_msk1; |
| if (ilim == 0) { |
| S = mhi = 0; |
| dval(&d) -= 5.; |
| if (dval(&d) > dval(&eps)) |
| goto one_digit; |
| if (dval(&d) < -dval(&eps)) |
| goto no_digits; |
| goto fast_failed; |
| } |
| #ifndef No_leftright |
| if (leftright) { |
| /* Use Steele & White method of only |
| * generating digits needed. |
| */ |
| dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps); |
| for(i = 0;;) { |
| L = (Long)(dval(&d)/ds); |
| dval(&d) -= L*ds; |
| *s++ = '0' + (int)L; |
| if (dval(&d) < dval(&eps)) { |
| if (dval(&d)) |
| inex = STRTOG_Inexlo; |
| goto ret1; |
| } |
| if (ds - dval(&d) < dval(&eps)) |
| goto bump_up; |
| if (++i >= ilim) |
| break; |
| dval(&eps) *= 10.; |
| dval(&d) *= 10.; |
| } |
| } |
| else { |
| #endif |
| /* Generate ilim digits, then fix them up. */ |
| dval(&eps) *= tens[ilim-1]; |
| for(i = 1;; i++, dval(&d) *= 10.) { |
| if ( (L = (Long)(dval(&d)/ds)) !=0) |
| dval(&d) -= L*ds; |
| *s++ = '0' + (int)L; |
| if (i == ilim) { |
| ds *= 0.5; |
| if (dval(&d) > ds + dval(&eps)) |
| goto bump_up; |
| else if (dval(&d) < ds - dval(&eps)) { |
| if (dval(&d)) |
| inex = STRTOG_Inexlo; |
| goto clear_trailing0; |
| } |
| break; |
| } |
| } |
| #ifndef No_leftright |
| } |
| #endif |
| fast_failed: |
| s = s0; |
| dval(&d) = d2; |
| k = k0; |
| ilim = ilim0; |
| } |
| |
| /* Do we have a "small" integer? */ |
| |
| if (be >= 0 && k <= fpi->int_max) { |
| /* Yes. */ |
| ds = tens[k]; |
| if (ndigits < 0 && ilim <= 0) { |
| S = mhi = 0; |
| if (ilim < 0 || dval(&d) <= 5*ds) |
| goto no_digits; |
| goto one_digit; |
| } |
| for(i = 1;; i++, dval(&d) *= 10.) { |
| L = dval(&d) / ds; |
| dval(&d) -= L*ds; |
| #ifdef Check_FLT_ROUNDS |
| /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
| if (dval(&d) < 0) { |
| L--; |
| dval(&d) += ds; |
| } |
| #endif |
| *s++ = '0' + (int)L; |
| if (dval(&d) == 0.) |
| break; |
| if (i == ilim) { |
| if (rdir) { |
| if (rdir == 1) |
| goto bump_up; |
| inex = STRTOG_Inexlo; |
| goto ret1; |
| } |
| dval(&d) += dval(&d); |
| #ifdef ROUND_BIASED |
| if (dval(&d) >= ds) |
| #else |
| if (dval(&d) > ds || (dval(&d) == ds && L & 1)) |
| #endif |
| { |
| bump_up: |
| inex = STRTOG_Inexhi; |
| while(*--s == '9') |
| if (s == s0) { |
| k++; |
| *s = '0'; |
| break; |
| } |
| ++*s++; |
| } |
| else { |
| inex = STRTOG_Inexlo; |
| clear_trailing0: |
| while(*--s == '0'){} |
| ++s; |
| } |
| break; |
| } |
| } |
| goto ret1; |
| } |
| |
| m2 = b2; |
| m5 = b5; |
| mhi = mlo = 0; |
| if (leftright) { |
| i = nbits - bbits; |
| if (be - i++ < fpi->emin && mode != 3 && mode != 5) { |
| /* denormal */ |
| i = be - fpi->emin + 1; |
| if (mode >= 2 && ilim > 0 && ilim < i) |
| goto small_ilim; |
| } |
| else if (mode >= 2) { |
| small_ilim: |
| j = ilim - 1; |
| if (m5 >= j) |
| m5 -= j; |
| else { |
| s5 += j -= m5; |
| b5 += j; |
| m5 = 0; |
| } |
| if ((i = ilim) < 0) { |
| m2 -= i; |
| i = 0; |
| } |
| } |
| b2 += i; |
| s2 += i; |
| mhi = i2b(1); |
| } |
| if (m2 > 0 && s2 > 0) { |
| i = m2 < s2 ? m2 : s2; |
| b2 -= i; |
| m2 -= i; |
| s2 -= i; |
| } |
| if (b5 > 0) { |
| if (leftright) { |
| if (m5 > 0) { |
| mhi = pow5mult(mhi, m5); |
| b1 = mult(mhi, b); |
| Bfree(b); |
| b = b1; |
| } |
| if ( (j = b5 - m5) !=0) |
| b = pow5mult(b, j); |
| } |
| else |
| b = pow5mult(b, b5); |
| } |
| S = i2b(1); |
| if (s5 > 0) |
| S = pow5mult(S, s5); |
| |
| /* Check for special case that d is a normalized power of 2. */ |
| |
| spec_case = 0; |
| if (mode < 2) { |
| if (bbits == 1 && be0 > fpi->emin + 1) { |
| /* The special case */ |
| b2++; |
| s2++; |
| spec_case = 1; |
| } |
| } |
| |
| /* Arrange for convenient computation of quotients: |
| * shift left if necessary so divisor has 4 leading 0 bits. |
| * |
| * Perhaps we should just compute leading 28 bits of S once |
| * and for all and pass them and a shift to quorem, so it |
| * can do shifts and ors to compute the numerator for q. |
| */ |
| i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask; |
| m2 += i; |
| if ((b2 += i) > 0) |
| b = lshift(b, b2); |
| if ((s2 += i) > 0) |
| S = lshift(S, s2); |
| if (k_check) { |
| if (cmp(b,S) < 0) { |
| k--; |
| b = multadd(b, 10, 0); /* we botched the k estimate */ |
| if (leftright) |
| mhi = multadd(mhi, 10, 0); |
| ilim = ilim1; |
| } |
| } |
| if (ilim <= 0 && mode > 2) { |
| if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { |
| /* no digits, fcvt style */ |
| no_digits: |
| k = -1 - ndigits; |
| inex = STRTOG_Inexlo; |
| goto ret; |
| } |
| one_digit: |
| inex = STRTOG_Inexhi; |
| *s++ = '1'; |
| k++; |
| goto ret; |
| } |
| if (leftright) { |
| if (m2 > 0) |
| mhi = lshift(mhi, m2); |
| |
| /* Compute mlo -- check for special case |
| * that d is a normalized power of 2. |
| */ |
| |
| mlo = mhi; |
| if (spec_case) { |
| mhi = Balloc(mhi->k); |
| Bcopy(mhi, mlo); |
| mhi = lshift(mhi, 1); |
| } |
| |
| for(i = 1;;i++) { |
| dig = quorem(b,S) + '0'; |
| /* Do we yet have the shortest decimal string |
| * that will round to d? |
| */ |
| j = cmp(b, mlo); |
| delta = diff(S, mhi); |
| j2 = delta->sign ? 1 : cmp(b, delta); |
| Bfree(delta); |
| #ifndef ROUND_BIASED |
| if (j2 == 0 && !mode && !(bits[0] & 1) && !rdir) { |
| if (dig == '9') |
| goto round_9_up; |
| if (j <= 0) { |
| if (b->wds > 1 || b->x[0]) |
| inex = STRTOG_Inexlo; |
| } |
| else { |
| dig++; |
| inex = STRTOG_Inexhi; |
| } |
| *s++ = dig; |
| goto ret; |
| } |
| #endif |
| if (j < 0 || (j == 0 && !mode |
| #ifndef ROUND_BIASED |
| && !(bits[0] & 1) |
| #endif |
| )) { |
| if (rdir && (b->wds > 1 || b->x[0])) { |
| if (rdir == 2) { |
| inex = STRTOG_Inexlo; |
| goto accept; |
| } |
| while (cmp(S,mhi) > 0) { |
| *s++ = dig; |
| mhi1 = multadd(mhi, 10, 0); |
| if (mlo == mhi) |
| mlo = mhi1; |
| mhi = mhi1; |
| b = multadd(b, 10, 0); |
| dig = quorem(b,S) + '0'; |
| } |
| if (dig++ == '9') |
| goto round_9_up; |
| inex = STRTOG_Inexhi; |
| goto accept; |
| } |
| if (j2 > 0) { |
| b = lshift(b, 1); |
| j2 = cmp(b, S); |
| #ifdef ROUND_BIASED |
| if (j2 >= 0 /*)*/ |
| #else |
| if ((j2 > 0 || (j2 == 0 && dig & 1)) |
| #endif |
| && dig++ == '9') |
| goto round_9_up; |
| inex = STRTOG_Inexhi; |
| } |
| if (b->wds > 1 || b->x[0]) |
| inex = STRTOG_Inexlo; |
| accept: |
| *s++ = dig; |
| goto ret; |
| } |
| if (j2 > 0 && rdir != 2) { |
| if (dig == '9') { /* possible if i == 1 */ |
| round_9_up: |
| *s++ = '9'; |
| inex = STRTOG_Inexhi; |
| goto roundoff; |
| } |
| inex = STRTOG_Inexhi; |
| *s++ = dig + 1; |
| goto ret; |
| } |
| *s++ = dig; |
| if (i == ilim) |
| break; |
| b = multadd(b, 10, 0); |
| if (mlo == mhi) |
| mlo = mhi = multadd(mhi, 10, 0); |
| else { |
| mlo = multadd(mlo, 10, 0); |
| mhi = multadd(mhi, 10, 0); |
| } |
| } |
| } |
| else |
| for(i = 1;; i++) { |
| *s++ = dig = quorem(b,S) + '0'; |
| if (i >= ilim) |
| break; |
| b = multadd(b, 10, 0); |
| } |
| |
| /* Round off last digit */ |
| |
| if (rdir) { |
| if (rdir == 2 || (b->wds <= 1 && !b->x[0])) |
| goto chopzeros; |
| goto roundoff; |
| } |
| b = lshift(b, 1); |
| j = cmp(b, S); |
| #ifdef ROUND_BIASED |
| if (j >= 0) |
| #else |
| if (j > 0 || (j == 0 && dig & 1)) |
| #endif |
| { |
| roundoff: |
| inex = STRTOG_Inexhi; |
| while(*--s == '9') |
| if (s == s0) { |
| k++; |
| *s++ = '1'; |
| goto ret; |
| } |
| ++*s++; |
| } |
| else { |
| chopzeros: |
| if (b->wds > 1 || b->x[0]) |
| inex = STRTOG_Inexlo; |
| while(*--s == '0'){} |
| ++s; |
| } |
| ret: |
| Bfree(S); |
| if (mhi) { |
| if (mlo && mlo != mhi) |
| Bfree(mlo); |
| Bfree(mhi); |
| } |
| ret1: |
| Bfree(b); |
| *s = 0; |
| *decpt = k + 1; |
| if (rve) |
| *rve = s; |
| *kindp |= inex; |
| return s0; |
| } |