| /** |
| * This file has no copyright assigned and is placed in the Public Domain. |
| * This file is part of the mingw-w64 runtime package. |
| * No warranty is given; refer to the file DISCLAIMER.PD within this package. |
| */ |
| #ifndef _CEPHES_EMATH_H |
| #define _CEPHES_EMATH_H |
| |
| /** |
| * This is a workaround for a gcc bug |
| */ |
| #define __restrict__ |
| |
| /* This file is extracted from S L Moshier's ioldoubl.c, |
| * modified for use in MinGW |
| * |
| * Extended precision arithmetic functions for long double I/O. |
| * This program has been placed in the public domain. |
| */ |
| |
| |
| /* |
| * Revision history: |
| * |
| * 5 Jan 84 PDP-11 assembly language version |
| * 6 Dec 86 C language version |
| * 30 Aug 88 100 digit version, improved rounding |
| * 15 May 92 80-bit long double support |
| * |
| * Author: S. L. Moshier. |
| * |
| * 6 Oct 02 Modified for MinGW by inlining utility routines, |
| * removing global variables, and splitting out strtold |
| * from _IO_ldtoa and _IO_ldtostr. |
| * |
| * Danny Smith <dannysmith@users.sourceforge.net> |
| * |
| */ |
| |
| |
| /* ieee.c |
| * |
| * Extended precision IEEE binary floating point arithmetic routines |
| * |
| * Numbers are stored in C language as arrays of 16-bit unsigned |
| * short integers. The arguments of the routines are pointers to |
| * the arrays. |
| * |
| * |
| * External e type data structure, simulates Intel 8087 chip |
| * temporary real format but possibly with a larger significand: |
| * |
| * NE-1 significand words (least significant word first, |
| * most significant bit is normally set) |
| * exponent (value = EXONE for 1.0, |
| * top bit is the sign) |
| * |
| * |
| * Internal data structure of a number (a "word" is 16 bits): |
| * |
| * ei[0] sign word (0 for positive, 0xffff for negative) |
| * ei[1] biased __exponent (value = EXONE for the number 1.0) |
| * ei[2] high guard word (always zero after normalization) |
| * ei[3] |
| * to ei[NI-2] significand (NI-4 significand words, |
| * most significant word first, |
| * most significant bit is set) |
| * ei[NI-1] low guard word (0x8000 bit is rounding place) |
| * |
| * |
| * |
| * Routines for external format numbers |
| * |
| * __asctoe64( string, &d ) ASCII string to long double |
| * __asctoeg( string, e, prec ) ASCII string to specified precision |
| * __e64toe( &d, e ) IEEE long double precision to e type |
| * __eadd( a, b, c ) c = b + a |
| * __eclear(e) e = 0 |
| * __ecmp (a, b) Returns 1 if a > b, 0 if a == b, |
| * -1 if a < b, -2 if either a or b is a NaN. |
| * __ediv( a, b, c ) c = b / a |
| * __efloor( a, b ) truncate to integer, toward -infinity |
| * __efrexp( a, exp, s ) extract exponent and significand |
| * __eifrac( e, &l, frac ) e to long integer and e type fraction |
| * __euifrac( e, &l, frac ) e to unsigned long integer and e type fraction |
| * __einfin( e ) set e to infinity, leaving its sign alone |
| * __eldexp( a, n, b ) multiply by 2**n |
| * __emov( a, b ) b = a |
| * __emul( a, b, c ) c = b * a |
| * __eneg(e) e = -e |
| * __eround( a, b ) b = nearest integer value to a |
| * __esub( a, b, c ) c = b - a |
| * __e24toasc( &f, str, n ) single to ASCII string, n digits after decimal |
| * __e53toasc( &d, str, n ) double to ASCII string, n digits after decimal |
| * __e64toasc( &d, str, n ) long double to ASCII string |
| * __etoasc( e, str, n ) e to ASCII string, n digits after decimal |
| * __etoe24( e, &f ) convert e type to IEEE single precision |
| * __etoe53( e, &d ) convert e type to IEEE double precision |
| * __etoe64( e, &d ) convert e type to IEEE long double precision |
| * __eisneg( e ) 1 if sign bit of e != 0, else 0 |
| * __eisinf( e ) 1 if e has maximum exponent (non-IEEE) |
| * or is infinite (IEEE) |
| * __eisnan( e ) 1 if e is a NaN |
| * __esqrt( a, b ) b = square root of a |
| * |
| * |
| * Routines for internal format numbers |
| * |
| * __eaddm( ai, bi ) add significands, bi = bi + ai |
| * __ecleaz(ei) ei = 0 |
| * __ecleazs(ei) set ei = 0 but leave its sign alone |
| * __ecmpm( ai, bi ) compare significands, return 1, 0, or -1 |
| * __edivm( ai, bi ) divide significands, bi = bi / ai |
| * __emdnorm(ai,l,s,exp) normalize and round off |
| * __emovi( a, ai ) convert external a to internal ai |
| * __emovo( ai, a ) convert internal ai to external a |
| * __emovz( ai, bi ) bi = ai, low guard word of bi = 0 |
| * __emulm( ai, bi ) multiply significands, bi = bi * ai |
| * __enormlz(ei) left-justify the significand |
| * __eshdn1( ai ) shift significand and guards down 1 bit |
| * __eshdn8( ai ) shift down 8 bits |
| * __eshdn6( ai ) shift down 16 bits |
| * __eshift( ai, n ) shift ai n bits up (or down if n < 0) |
| * __eshup1( ai ) shift significand and guards up 1 bit |
| * __eshup8( ai ) shift up 8 bits |
| * __eshup6( ai ) shift up 16 bits |
| * __esubm( ai, bi ) subtract significands, bi = bi - ai |
| * |
| * |
| * The result is always normalized and rounded to NI-4 word precision |
| * after each arithmetic operation. |
| * |
| * Exception flags are NOT fully supported. |
| * |
| * Define INFINITY in mconf.h for support of infinity; otherwise a |
| * saturation arithmetic is implemented. |
| * |
| * Define NANS for support of Not-a-Number items; otherwise the |
| * arithmetic will never produce a NaN output, and might be confused |
| * by a NaN input. |
| * If NaN's are supported, the output of ecmp(a,b) is -2 if |
| * either a or b is a NaN. This means asking if(ecmp(a,b) < 0) |
| * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than |
| * if in doubt. |
| * Signaling NaN's are NOT supported; they are treated the same |
| * as quiet NaN's. |
| * |
| * Denormals are always supported here where appropriate (e.g., not |
| * for conversion to DEC numbers). |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <math.h> |
| #include <locale.h> |
| #include <ctype.h> |
| |
| #undef alloca |
| #define alloca __builtin_alloca |
| |
| /* Don't build non-ANSI _IO_ldtoa. It is not thread safe. */ |
| #ifndef USE_LDTOA |
| #define USE_LDTOA 0 |
| #endif |
| |
| |
| /* Number of 16 bit words in external x type format */ |
| #define NE 6 |
| |
| /* Number of 16 bit words in internal format */ |
| #define NI (NE+3) |
| |
| /* Array offset to exponent */ |
| #define E 1 |
| |
| /* Array offset to high guard word */ |
| #define M 2 |
| |
| /* Number of bits of precision */ |
| #define NBITS ((NI-4)*16) |
| |
| /* Maximum number of decimal digits in ASCII conversion |
| * = NBITS*log10(2) |
| */ |
| #define NDEC (NBITS*8/27) |
| |
| /* The exponent of 1.0 */ |
| #define EXONE (0x3fff) |
| |
| |
| #define mtherr(fname, code) |
| |
| |
| extern long double strtold (const char * __restrict__ s, char ** __restrict__ se); |
| extern int __asctoe64(const char * __restrict__ ss, |
| short unsigned int * __restrict__ y); |
| extern void __emul(const short unsigned int * a, |
| const short unsigned int * b, |
| short unsigned int * c); |
| extern int __ecmp(const short unsigned int * __restrict__ a, |
| const short unsigned int * __restrict__ b); |
| extern int __enormlz(short unsigned int *x); |
| extern int __eshift(short unsigned int *x, int sc); |
| extern void __eaddm(const short unsigned int * __restrict__ x, |
| short unsigned int * __restrict__ y); |
| extern void __esubm(const short unsigned int * __restrict__ x, |
| short unsigned int * __restrict__ y); |
| extern void __emdnorm(short unsigned int *s, int lost, int subflg, |
| int exp, int rcntrl, const int rndprc); |
| extern void __toe64(short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b); |
| extern int __edivm(short unsigned int * __restrict__ den, |
| short unsigned int * __restrict__ num); |
| extern int __emulm(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b); |
| extern void __emovi(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b); |
| extern void __emovo(const short unsigned int * __restrict__ a, |
| short unsigned int * __restrict__ b); |
| |
| #if USE_LDTOA |
| |
| extern char * _IO_ldtoa(long double, int, int, int *, int *, char **); |
| extern void _IO_ldtostr(long double *x, char *string, int ndigs, |
| int flags, char fmt); |
| |
| extern void __eiremain(short unsigned int * __restrict__ den, |
| short unsigned int *__restrict__ num, |
| short unsigned int *__restrict__ equot); |
| extern void __efloor(short unsigned int *x, short unsigned int *y); |
| extern void __eadd1(const short unsigned int * __restrict__ a, |
| const short unsigned int * __restrict__ b, |
| short unsigned int * __restrict__ c, |
| int subflg); |
| extern void __esub(const short unsigned int *a, const short unsigned int *b, |
| short unsigned int *c); |
| extern void __ediv(const short unsigned int *a, const short unsigned int *b, |
| short unsigned int *c); |
| extern void __e64toe(short unsigned int *pe, short unsigned int *y); |
| |
| |
| #endif |
| |
| static __inline__ int __eisneg(const short unsigned int *x); |
| static __inline__ int __eisinf(const short unsigned int *x); |
| static __inline__ int __eisnan(const short unsigned int *x); |
| static __inline__ int __eiszero(const short unsigned int *a); |
| static __inline__ void __emovz(register const short unsigned int * __restrict__ a, |
| register short unsigned int * __restrict__ b); |
| static __inline__ void __eclear(register short unsigned int *x); |
| static __inline__ void __ecleaz(register short unsigned int *xi); |
| static __inline__ void __ecleazs(register short unsigned int *xi); |
| static __inline__ int __eiisinf(const short unsigned int *x); |
| static __inline__ int __eiisnan(const short unsigned int *x); |
| static __inline__ int __eiiszero(const short unsigned int *x); |
| static __inline__ void __enan_64(short unsigned int *nanptr); |
| static __inline__ void __enan_NBITS (short unsigned int *nanptr); |
| static __inline__ void __enan_NI16 (short unsigned int *nanptr); |
| static __inline__ void __einfin(register short unsigned int *x); |
| static __inline__ void __eneg(short unsigned int *x); |
| static __inline__ void __eshup1(register short unsigned int *x); |
| static __inline__ void __eshup8(register short unsigned int *x); |
| static __inline__ void __eshup6(register short unsigned int *x); |
| static __inline__ void __eshdn1(register short unsigned int *x); |
| static __inline__ void __eshdn8(register short unsigned int *x); |
| static __inline__ void __eshdn6(register short unsigned int *x); |
| |
| |
| |
| /* Intel IEEE, low order words come first: |
| */ |
| #define IBMPC 1 |
| |
| /* Define 1 for ANSI C atan2() function |
| * See atan.c and clog.c. |
| */ |
| #define ANSIC 1 |
| |
| /*define VOLATILE volatile*/ |
| #define VOLATILE |
| |
| /* For 12-byte long doubles on an i386, pad a 16-bit short 0 |
| * to the end of real constants initialized by integer arrays. |
| * |
| * #define XPD 0, |
| * |
| * Otherwise, the type is 10 bytes long and XPD should be |
| * defined blank. |
| * |
| * #define XPD |
| */ |
| #define XPD 0, |
| /* #define XPD */ |
| #define NANS 1 |
| |
| /* NaN's require infinity support. */ |
| #ifdef NANS |
| #ifndef INFINITY |
| #define INFINITY |
| #endif |
| #endif |
| |
| /* This handles 64-bit long ints. */ |
| #define LONGBITS (8 * sizeof(long)) |
| |
| |
| #define NTEN 12 |
| #define MAXP 4096 |
| |
| /* |
| ; Clear out entire external format number. |
| ; |
| ; unsigned short x[]; |
| ; eclear( x ); |
| */ |
| |
| static __inline__ void __eclear(register short unsigned int *x) |
| { |
| memset(x, 0, NE * sizeof(unsigned short)); |
| } |
| |
| |
| /* Move external format number from a to b. |
| * |
| * emov( a, b ); |
| */ |
| |
| static __inline__ void __emov(register const short unsigned int * __restrict__ a, |
| register short unsigned int * __restrict__ b) |
| { |
| memcpy(b, a, NE * sizeof(unsigned short)); |
| } |
| |
| |
| /* |
| ; Negate external format number |
| ; |
| ; unsigned short x[NE]; |
| ; eneg( x ); |
| */ |
| |
| static __inline__ void __eneg(short unsigned int *x) |
| { |
| #ifdef NANS |
| if (__eisnan(x)) |
| return; |
| #endif |
| x[NE-1] ^= 0x8000; /* Toggle the sign bit */ |
| } |
| |
| |
| /* Return 1 if external format number is negative, |
| * else return zero. |
| */ |
| static __inline__ int __eisneg(const short unsigned int *x) |
| { |
| #ifdef NANS |
| if (__eisnan(x)) |
| return (0); |
| #endif |
| if (x[NE-1] & 0x8000) |
| return (1); |
| else |
| return (0); |
| } |
| |
| |
| /* Return 1 if external format number has maximum possible exponent, |
| * else return zero. |
| */ |
| static __inline__ int __eisinf(const short unsigned int *x) |
| { |
| if ((x[NE - 1] & 0x7fff) == 0x7fff) |
| { |
| #ifdef NANS |
| if (__eisnan(x)) |
| return (0); |
| #endif |
| return (1); |
| } |
| else |
| return (0); |
| } |
| |
| /* Check if e-type number is not a number. |
| */ |
| static __inline__ int __eisnan(const short unsigned int *x) |
| { |
| #ifdef NANS |
| int i; |
| /* NaN has maximum __exponent */ |
| if ((x[NE - 1] & 0x7fff) == 0x7fff) |
| /* ... and non-zero significand field. */ |
| for (i = 0; i < NE - 1; i++) |
| { |
| if (*x++ != 0) |
| return (1); |
| } |
| #endif |
| return (0); |
| } |
| |
| /* |
| ; Fill __entire number, including __exponent and significand, with |
| ; largest possible number. These programs implement a saturation |
| ; value that is an ordinary, legal number. A special value |
| ; "infinity" may also be implemented; this would require tests |
| ; for that value and implementation of special rules for arithmetic |
| ; operations involving inifinity. |
| */ |
| |
| static __inline__ void __einfin(register short unsigned int *x) |
| { |
| register int i; |
| #ifdef INFINITY |
| for (i = 0; i < NE - 1; i++) |
| *x++ = 0; |
| *x |= 32767; |
| #else |
| for (i = 0; i < NE - 1; i++) |
| *x++ = 0xffff; |
| *x |= 32766; |
| *(x - 5) = 0; |
| #endif |
| } |
| |
| /* Clear out internal format number. |
| */ |
| |
| static __inline__ void __ecleaz(register short unsigned int *xi) |
| { |
| memset(xi, 0, NI * sizeof(unsigned short)); |
| } |
| |
| /* same, but don't touch the sign. */ |
| |
| static __inline__ void __ecleazs(register short unsigned int *xi) |
| { |
| ++xi; |
| memset(xi, 0, (NI-1) * sizeof(unsigned short)); |
| } |
| |
| /* Move internal format number from a to b. |
| */ |
| static __inline__ void __emovz(register const short unsigned int * __restrict__ a, |
| register short unsigned int * __restrict__ b) |
| { |
| memcpy(b, a, (NI-1) * sizeof(unsigned short)); |
| b[NI - 1] = 0; |
| } |
| |
| /* Return nonzero if internal format number is a NaN. |
| */ |
| |
| static __inline__ int __eiisnan (const short unsigned int *x) |
| { |
| int i; |
| |
| if ((x[E] & 0x7fff) == 0x7fff) |
| { |
| for (i = M + 1; i < NI; i++ ) |
| { |
| if (x[i] != 0) |
| return (1); |
| } |
| } |
| return (0); |
| } |
| |
| /* Return nonzero if external format number is zero. */ |
| |
| static __inline__ int |
| __eiszero(const short unsigned int * a) |
| { |
| union { |
| long double ld; |
| unsigned short sh[8]; |
| } av; |
| av.ld = 0.0; |
| memcpy (av.sh, a, 12); |
| if (av.ld == 0.0) |
| return (1); |
| return (0); |
| } |
| |
| /* Return nonzero if internal format number is zero. */ |
| |
| static __inline__ int |
| __eiiszero(const short unsigned int * ai) |
| { |
| int i; |
| /* skip the sign word */ |
| for (i = 1; i < NI - 1; i++ ) |
| { |
| if (ai[i] != 0) |
| return (0); |
| } |
| return (1); |
| } |
| |
| |
| /* Return nonzero if internal format number is infinite. */ |
| |
| static __inline__ int |
| __eiisinf (const unsigned short *x) |
| { |
| #ifdef NANS |
| if (__eiisnan (x)) |
| return (0); |
| #endif |
| if ((x[E] & 0x7fff) == 0x7fff) |
| return (1); |
| return (0); |
| } |
| |
| /* |
| ; Compare significands of numbers in internal format. |
| ; Guard words are included in the comparison. |
| ; |
| ; unsigned short a[NI], b[NI]; |
| ; cmpm( a, b ); |
| ; |
| ; for the significands: |
| ; returns +1 if a > b |
| ; 0 if a == b |
| ; -1 if a < b |
| */ |
| static __inline__ int __ecmpm(register const short unsigned int * __restrict__ a, |
| register const short unsigned int * __restrict__ b) |
| { |
| int i; |
| |
| a += M; /* skip up to significand area */ |
| b += M; |
| for (i = M; i < NI; i++) |
| { |
| if( *a++ != *b++ ) |
| goto difrnt; |
| } |
| return(0); |
| |
| difrnt: |
| if ( *(--a) > *(--b) ) |
| return (1); |
| else |
| return (-1); |
| } |
| |
| |
| /* |
| ; Shift significand down by 1 bit |
| */ |
| |
| static __inline__ void __eshdn1(register short unsigned int *x) |
| { |
| register unsigned short bits; |
| int i; |
| |
| x += M; /* point to significand area */ |
| |
| bits = 0; |
| for (i = M; i < NI; i++ ) |
| { |
| if (*x & 1) |
| bits |= 1; |
| *x >>= 1; |
| if (bits & 2) |
| *x |= 0x8000; |
| bits <<= 1; |
| ++x; |
| } |
| } |
| |
| /* |
| ; Shift significand up by 1 bit |
| */ |
| |
| static __inline__ void __eshup1(register short unsigned int *x) |
| { |
| register unsigned short bits; |
| int i; |
| |
| x += NI-1; |
| bits = 0; |
| |
| for (i = M; i < NI; i++) |
| { |
| if (*x & 0x8000) |
| bits |= 1; |
| *x <<= 1; |
| if (bits & 2) |
| *x |= 1; |
| bits <<= 1; |
| --x; |
| } |
| } |
| |
| |
| /* |
| ; Shift significand down by 8 bits |
| */ |
| |
| static __inline__ void __eshdn8(register short unsigned int *x) |
| { |
| register unsigned short newbyt, oldbyt; |
| int i; |
| |
| x += M; |
| oldbyt = 0; |
| for (i = M; i < NI; i++) |
| { |
| newbyt = *x << 8; |
| *x >>= 8; |
| *x |= oldbyt; |
| oldbyt = newbyt; |
| ++x; |
| } |
| } |
| |
| /* |
| ; Shift significand up by 8 bits |
| */ |
| |
| static __inline__ void __eshup8(register short unsigned int *x) |
| { |
| int i; |
| register unsigned short newbyt, oldbyt; |
| |
| x += NI - 1; |
| oldbyt = 0; |
| |
| for (i = M; i < NI; i++) |
| { |
| newbyt = *x >> 8; |
| *x <<= 8; |
| *x |= oldbyt; |
| oldbyt = newbyt; |
| --x; |
| } |
| } |
| |
| /* |
| ; Shift significand up by 16 bits |
| */ |
| |
| static __inline__ void __eshup6(register short unsigned int *x) |
| { |
| int i; |
| register unsigned short *p; |
| |
| p = x + M; |
| x += M + 1; |
| |
| for (i = M; i < NI - 1; i++) |
| *p++ = *x++; |
| |
| *p = 0; |
| } |
| |
| /* |
| ; Shift significand down by 16 bits |
| */ |
| |
| static __inline__ void __eshdn6(register short unsigned int *x) |
| { |
| int i; |
| register unsigned short *p; |
| |
| x += NI - 1; |
| p = x + 1; |
| |
| for (i = M; i < NI - 1; i++) |
| *(--p) = *(--x); |
| |
| *(--p) = 0; |
| } |
| |
| /* |
| ; Add significands |
| ; x + y replaces y |
| */ |
| |
| static __inline__ void __enan_64(unsigned short* nanptr) |
| { |
| int i; |
| for (i = 0; i < 3; i++) |
| *nanptr++ = 0; |
| *nanptr++ = 0xc000; |
| *nanptr++ = 0x7fff; |
| *nanptr = 0; |
| return; |
| } |
| |
| static __inline__ void __enan_NBITS(unsigned short* nanptr) |
| { |
| int i; |
| for (i = 0; i < NE - 2; i++) |
| *nanptr++ = 0; |
| *nanptr++ = 0xc000; |
| *nanptr = 0x7fff; |
| return; |
| } |
| |
| static __inline__ void __enan_NI16(unsigned short* nanptr) |
| { |
| int i; |
| *nanptr++ = 0; |
| *nanptr++ = 0x7fff; |
| *nanptr++ = 0; |
| *nanptr++ = 0xc000; |
| for (i = 4; i < NI; i++) |
| *nanptr++ = 0; |
| return; |
| } |
| |
| #endif /* _CEPHES_EMATH_H */ |
| |