| /** |
| * This file has no copyright assigned and is placed in the Public Domain. |
| * This file is part of the mingw-w64 runtime package. |
| * No warranty is given; refer to the file DISCLAIMER.PD within this package. |
| */ |
| #include "cephes_mconf.h" |
| |
| /* A[]: Stirling's formula expansion of log gamma |
| * B[], C[]: log gamma function between 2 and 3 |
| */ |
| #ifdef UNK |
| static uD A[] = { |
| { { 8.11614167470508450300E-4 } }, |
| { { -5.95061904284301438324E-4 } }, |
| { { 7.93650340457716943945E-4 } }, |
| { { -2.77777777730099687205E-3 } }, |
| { { 8.33333333333331927722E-2 } } |
| }; |
| static uD B[] = { |
| { { -1.37825152569120859100E3 } }, |
| { { -3.88016315134637840924E4 } }, |
| { { -3.31612992738871184744E5 } }, |
| { { -1.16237097492762307383E6 } }, |
| { { -1.72173700820839662146E6 } }, |
| { { -8.53555664245765465627E5 } } |
| }; |
| static uD C[] = { |
| { { -3.51815701436523470549E2 } }, |
| { { -1.70642106651881159223E4 } }, |
| { { -2.20528590553854454839E5 } }, |
| { { -1.13933444367982507207E6 } }, |
| { { -2.53252307177582951285E6 } }, |
| { { -2.01889141433532773231E6 } } |
| }; |
| /* log( sqrt( 2*pi ) ) */ |
| static double LS2PI = 0.91893853320467274178; |
| #define MAXLGM 2.556348e305 |
| static double LOGPI = 1.14472988584940017414; |
| #endif |
| |
| #ifdef DEC |
| static const uD A[] = { |
| { { 0035524,0141201,0034633,0031405 } }, |
| { { 0135433,0176755,0126007,0045030 } }, |
| { { 0035520,0006371,0003342,0172730 } }, |
| { { 0136066,0005540,0132605,0026407 } }, |
| { { 0037252,0125252,0125252,0125132 } } |
| }; |
| static const uD B[] = { |
| { { 0142654,0044014,0077633,0035410 } }, |
| { { 0144027,0110641,0125335,0144760 } }, |
| { { 0144641,0165637,0142204,0047447 } }, |
| { { 0145215,0162027,0146246,0155211 } }, |
| { { 0145322,0026110,0010317,0110130 } }, |
| { { 0145120,0061472,0120300,0025363 } } |
| }; |
| static const uD C[] = { |
| { { 0142257,0164150,0163630,0112622 } }, |
| { { 0143605,0050153,0156116,0135272 } }, |
| { { 0144527,0056045,0145642,0062332 } }, |
| { { 0145213,0012063,0106250,0001025 } }, |
| { { 0145432,0111254,0044577,0115142 } }, |
| { { 0145366,0071133,0050217,0005122 } } |
| }; |
| /* log( sqrt( 2*pi ) ) */ |
| static const uD LS2P[] = { {040153,037616,041445,0172645,} }; |
| #define LS2PI LS2P[0].d |
| #define MAXLGM 2.035093e36 |
| static const uD LPI[] = { { 0040222,0103202,0043475,0006750, } }; |
| #define LOGPI LPI[0].d |
| |
| #endif |
| |
| #ifdef IBMPC |
| static const uD A[] = { |
| { { 0x6661,0x2733,0x9850,0x3f4a } }, |
| { { 0xe943,0xb580,0x7fbd,0xbf43 } }, |
| { { 0x5ebb,0x20dc,0x019f,0x3f4a } }, |
| { { 0xa5a1,0x16b0,0xc16c,0xbf66 } }, |
| { { 0x554b,0x5555,0x5555,0x3fb5 } } |
| }; |
| static const uD B[] = { |
| { { 0x6761,0x8ff3,0x8901,0xc095 } }, |
| { { 0xb93e,0x355b,0xf234,0xc0e2 } }, |
| { { 0x89e5,0xf890,0x3d73,0xc114 } }, |
| { { 0xdb51,0xf994,0xbc82,0xc131 } }, |
| { { 0xf20b,0x0219,0x4589,0xc13a } }, |
| { { 0x055e,0x5418,0x0c67,0xc12a } } |
| }; |
| static const uD C[] = { |
| { { 0x12b2,0x1cf3,0xfd0d,0xc075 } }, |
| { { 0xd757,0x7b89,0xaa0d,0xc0d0 } }, |
| { { 0x4c9b,0xb974,0xeb84,0xc10a } }, |
| { { 0x0043,0x7195,0x6286,0xc131 } }, |
| { { 0xf34c,0x892f,0x5255,0xc143 } }, |
| { { 0xe14a,0x6a11,0xce4b,0xc13e } } |
| }; |
| /* log( sqrt( 2*pi ) ) */ |
| static const union |
| { |
| unsigned short s[4]; |
| double d; |
| } ls2p = {{0xbeb5,0xc864,0x67f1,0x3fed}}; |
| #define LS2PI (ls2p.d) |
| #define MAXLGM 2.556348e305 |
| /* log (pi) */ |
| static const union |
| { |
| unsigned short s[4]; |
| double d; |
| } lpi = {{0xa1bd,0x48e7,0x50d0,0x3ff2}}; |
| #define LOGPI (lpi.d) |
| #endif |
| |
| #ifdef MIEEE |
| static const uD A[] = { |
| { { 0x3f4a,0x9850,0x2733,0x6661 } }, |
| { { 0xbf43,0x7fbd,0xb580,0xe943 } }, |
| { { 0x3f4a,0x019f,0x20dc,0x5ebb } }, |
| { { 0xbf66,0xc16c,0x16b0,0xa5a1 } }, |
| { { 0x3fb5,0x5555,0x5555,0x554b } } |
| }; |
| static const uD B[] = { |
| { { 0xc095,0x8901,0x8ff3,0x6761 } }, |
| { { 0xc0e2,0xf234,0x355b,0xb93e } }, |
| { { 0xc114,0x3d73,0xf890,0x89e5 } }, |
| { { 0xc131,0xbc82,0xf994,0xdb51 } }, |
| { { 0xc13a,0x4589,0x0219,0xf20b } }, |
| { { 0xc12a,0x0c67,0x5418,0x055e } } |
| }; |
| static const uD C[] = { |
| { { 0xc075,0xfd0d,0x1cf3,0x12b2 } }, |
| { { 0xc0d0,0xaa0d,0x7b89,0xd757 } }, |
| { { 0xc10a,0xeb84,0xb974,0x4c9b } }, |
| { { 0xc131,0x6286,0x7195,0x0043 } }, |
| { { 0xc143,0x5255,0x892f,0xf34c } }, |
| { { 0xc13e,0xce4b,0x6a11,0xe14a } } |
| }; |
| /* log( sqrt( 2*pi ) ) */ |
| static const union |
| { |
| unsigned short s[4]; |
| double d; |
| } ls2p = {{0x3fed,0x67f1,0xc864,0xbeb5}}; |
| #define LS2PI ls2p.d |
| #define MAXLGM 2.556348e305 |
| /* log (pi) */ |
| static const union |
| { |
| unsigned short s[4]; |
| double d; |
| } lpi = {{0x3ff2, 0x50d0, 0x48e7, 0xa1bd}}; |
| #define LOGPI (lpi.d) |
| #endif |
| |
| |
| /* Logarithm of gamma function */ |
| /* Reentrant version */ |
| double __lgamma_r(double x, int* sgngam); |
| |
| double __lgamma_r(double x, int* sgngam) |
| { |
| double p, q, u, w, z; |
| int i; |
| |
| *sgngam = 1; |
| #ifdef NANS |
| if (isnan(x)) |
| return (x); |
| #endif |
| |
| #ifdef INFINITIES |
| if (!isfinite(x)) |
| return (INFINITY); |
| #endif |
| |
| if (x < -34.0) |
| { |
| q = -x; |
| w = __lgamma_r(q, sgngam); /* note this modifies sgngam! */ |
| p = floor(q); |
| if (p == q) |
| { |
| lgsing: |
| _SET_ERRNO(EDOM); |
| mtherr( "lgam", SING ); |
| #ifdef INFINITIES |
| return (INFINITY); |
| #else |
| return (MAXNUM); |
| #endif |
| } |
| i = p; |
| if ((i & 1) == 0) |
| *sgngam = -1; |
| else |
| *sgngam = 1; |
| z = q - p; |
| if (z > 0.5) |
| { |
| p += 1.0; |
| z = p - q; |
| } |
| z = q * sin( PI * z ); |
| if (z == 0.0) |
| goto lgsing; |
| /* z = log(PI) - log( z ) - w;*/ |
| z = LOGPI - log( z ) - w; |
| return (z); |
| } |
| |
| if (x < 13.0) |
| { |
| z = 1.0; |
| p = 0.0; |
| u = x; |
| while (u >= 3.0) |
| { |
| p -= 1.0; |
| u = x + p; |
| z *= u; |
| } |
| while (u < 2.0) |
| { |
| if (u == 0.0) |
| goto lgsing; |
| z /= u; |
| p += 1.0; |
| u = x + p; |
| } |
| if (z < 0.0) |
| { |
| *sgngam = -1; |
| z = -z; |
| } |
| else |
| *sgngam = 1; |
| if (u == 2.0) |
| return ( log(z) ); |
| p -= 2.0; |
| x = x + p; |
| p = x * polevl(x, B, 5) / p1evl(x, C, 6); |
| return ( log(z) + p ); |
| } |
| |
| if (x > MAXLGM) |
| { |
| _SET_ERRNO(ERANGE); |
| mtherr("lgamma", OVERFLOW); |
| #ifdef INFINITIES |
| return (*sgngam * INFINITY); |
| #else |
| return (*sgngam * MAXNUM); |
| #endif |
| } |
| |
| q = (x - 0.5) * log(x) - x + LS2PI; |
| if (x > 1.0e8) |
| return (q); |
| |
| p = 1.0/(x*x); |
| if (x >= 1000.0) |
| q += (( 7.9365079365079365079365e-4 * p |
| - 2.7777777777777777777778e-3) *p |
| + 0.0833333333333333333333) / x; |
| else |
| q += polevl( p, A, 4 ) / x; |
| return (q); |
| } |
| |
| /* This is the C99 version */ |
| double lgamma(double x) |
| { |
| return (__lgamma_r(x, &signgam)); |
| } |
| |